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Chapter 9: Flexible Functional Forms 

 

1. Introduction 
 

In this chapter, we will take an in depth look at the problems involved in choosing functional forms 

for estimating systems of consumer and producer demand functions and producer supply functions.  

We will attempt to find functional forms that are consistent with the restrictions on supply and 

demand functions that are implied by economic theory but are also sufficiently flexible that 

elasticities of supply and demand are not arbitrarily restricted by the choice of the functional form.  

We will make extensive use of duality theory
1
 in this chapter in order to obtain systems of demand 

and supply functions that are consistent with economic theory but yet can be estimated by using 

linear regression techniques or “slightly” nonlinear regressions.  Since many problems in applied 

economics depend on obtaining accurate estimates of elasticities, this topic is of considerable 

importance for the applied economist. 

 

Section 2 below starts off by giving a formal definition of a flexible functional form for a 

production function and a cost function.  Basically, flexible functional forms are functional forms 

that have a second order approximation property so that elasticities of supply and demand are not a 

priori restricted by using a flexible functional form.  Sections 3-5 give three examples of flexible 

functional forms for cost functions: the Generalized Leontief cost function, the Translog cost 

function and the Normalized Quadratic cost function.  The Normalized Quadratic functional form is 

our preferred functional form, because convexity or concavity restrictions can be imposed on this 

functional form in a parsimonious way without destroying the flexibility of the functional form.  

We do not know of any other flexible functional form that has this property.
2
  

 

Section 6 shows how cost functions can be applied to the problems involved in estimating systems 

of consumer demand functions that are consistent with utility maximizing behavior.  Sections 7 and 

8 apply the general methodology to two specific functional forms: the Generalized Leontief cost 

function and the Normalized Quadratic cost function.  Section 9 discusses the problems involved in 

cardinalizing a measure of utility.  Section 10 discusses how nonhomothetic preferences can be 

estimated and section 11 extends this discussion by showing how the use of spline functions can 

add extra flexibility. 

 

In section 12, we turn our attention to the problems involved in estimating multiple output, multiple 

input technologies.
3
  The unit (capital) profit function is a key concept that is explained in this 

section.  Sections 13-16 apply the general framework to a number of specific functional forms.  

Section 17 is a counterpart to section 11 and shows how spline functions can be used to add extra 

flexibility. 

                                                           
1
 See chapter 3 of these notes.  Some of the material in chapter 3 will be repeated in the present chapter. 

2
 For a comparison of the Normalized Quadratic functional form with other flexible functional forms, see Diewert and 

Wales (1993). 
3
 Sections 2-5 dealt with only single output, multiple input technologies. 
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Finally, sections 18 and 19 provide some generalizations of the basic normalized quadratic 

functional form.  In section 18, we introduce a variant of the normalized quadratic profit function 

that can achieve flexibility at two points instead of the usual one point flexibility property.
4
  In 

order to implement this model, the number of commodities cannot be too large, since having 

enough parameters to be flexible at two points instead of one point will double the number of 

parameters to be estimated.  On the other hand, the generalization of the Normalized Quadratic 

functional form presented in section 19 is applicable to situations where the number of 

commodities is very large.
5
 

 

2. The Definition of a Flexible Functional Form 

 

Consider an N input, one output constant returns to scale production function f where y = 

f(x1,x2,...,xN) = f(x) and y  0 denotes the output produced by the nonnegative input vector x  0N. 

 

The constant returns to scale assumption means that f is linearly homogeneous; i.e., we have 

 

(1) f(x) = f(x) for all scalars   0 and input vectors x  0N. 

 

If in addition, f is twice continuously differentiable, then Euler’s Theorem on homogeneous 

functions and Young’s Theorem from calculus imply the following restrictions on the first and 

second order partial derivatives of f: 

 

(2) xT
f(x) = f(x) ;                                             (1 restriction) 

(3) 2
f(x)x = 0N ;                                                (N restrictions) 

(4) 2
f(x) = [

2
f(x)]

T
                                          (N(N1)/2 restrictions). 

 

The restrictions given by (2) and (3) are implied by Euler’s Theorem and the symmetry restrictions 

(4) are implied by Young’s Theorem. 

 

A flexible functional form
6
 f is a functional form that has enough parameters in it so that f can 

approximate an arbitrary twice continuously differentiable function f* to the second order at an 

arbitrary point x* in the domain of definition of f and f*.  Thus f must have enough free parameters 

in order to satisfy the following 1+N+N
2
 equations: 

 

(5) f(x*) = f*(x*) ;                                           (1 equation) 

(6) f(x*) = f*(x*) ;                                     (N equations) 

(7) 2
f(x*) = 

2
f*(x*) ;                                  (N

2
 equations). 

 

Of course, since both f and f* are assumed to be twice continuously differentiable, we do not have 

to satisfy all N
2
 equations in (7) since Young’s Theorem implies that 

2
f(x*)/xixj = 

2
f(x*)/xjxi 

and 
2
f*(x*)/xixj = 

2
f*(x*)/xjxi for all i and j.  Thus the matrices of second order partial 

derivatives 
2
f(x*) and 

2
f*(x*) are both symmetric matrices and so there are only N(N+1)/2 

                                                           
4
 This section is based on Diewert and Lawrence (2002). 

5
 This section is based on Diewert and Wales (1988b). 

6
 This terminology was introduced by Diewert (1974a; 133). 
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independent equations to be satisfied in the restrictions (7).  Thus a general flexible functional form 

must have at least 1+N+N(N+1)/2 free parameters. 

 

The simplest example of a flexible functional form is the following quadratic function: 

 

(8) f(x)  a0 + a
T
x + (1/2)x

T
Ax ;                                 A = A

T
 

 

where a0 is a scalar parameter,  a
T
  [a1,...,aN] is a vector of parameters and A  [aij] is a symmetric 

matrix of parameters.  Thus the f defined by (8) has 1+N+N(N+1)/2 parameters.  To show that this 

f is flexible, we need to choose a0, a and A to satisfy equations (5)-(7).  Upon noting that f(x) = a 

+ Ax and 
2
f(x) = A, equations (5)-(7) become the following equations: 

 

(9) a0 + a
T
x* + (1/2)x*

T
Ax* = f*(x*) ; 

(10)                      a +Ax* = f*(x*) ; 

(11)                            A    = 
2
f*(x*). 

 

To satisfy these equations, choose A  
2
f*(x*) (and A will be a symmetric matrix since f* is 

assumed to be twice continuously differentiable); a  f*(x*)  Ax* and finally, choose a0  f*(x*) 

[ a
T
x* + (1/2)x*

T
Ax*]. 

 

In many applications, we want to find a flexible functional form f that is also linearly 

homogeneous.  For example, in production theory, if the minimum average cost plant size is small 

relative to the size of the market, then we can approximate the industry technology by means of a 

constant returns to scale production function.  As another example, in the pure theory of 

international trade, we often assume that consumer preferences are homothetic
7

; i.e., the 

consumer’s utility function can be represented by g[f(x)] where f is linearly homogeneous and g is 

a monotonically increasing and continuous function of one variable.  In this case, we can represent 

the consumer’s preferences equally well by using the linearly homogeneous utility function g[f(x)]. 

 

If  the production function f (or the utility function f) is linearly homogeneous, then the 

corresponding cost function C has the following structure: for y > 0 and p >> 0N, 

 

(12) C(y,p)  minx {p
T
x : f(x)  y} 

                       = minx {p
T
x : f(x) = y}  if f is continuous and increasing in the components of x 

                       = minx {p
T
x : (1/y)f(x) = 1} 

                       = minx {p
T
x : f({1/y}x) = 1}               using the linear homogeneity of f 

                       = minx/y {yp
T
(x/y) : f(x/y) = 1} 

                       = y minz {p
T
z : f(z) = 1}                      letting z  x/y 

                       = y C(1,p) 

                       = y c(p) 

 

where we define the unit cost function c(p) as C(1,p), the minimum cost of producing one unit of 

output (or utility). 

 

                                                           
7
 Shephard (1953) introduced this term. 
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It is straightforward to show that C(1,p) and c(p) are linearly homogeneous and concave in the 

components of the price vector p. 

 

Problems. 
 

1. Let y  [y1,...,yN]
T
 denote a vector of variable outputs and inputs that a firm produces or uses 

during a period; if the firm produces commodity i, then yi > 0 while if the firm uses commodity i as 

an input, then yi < 0 for i = 1,...,N.  The vector y is called a net output vector or a netput vector.  

Given the net output vector y, the minimum amount of capital k  0 that is required to produce the 

vector of net outputs y is F(y), where F is the firm’s capital requirements function.
8
 Given a 

positive vector of variable input and output prices p >> 0N and a positive amount of capital k > 0, 

the firm’s variable profit function (k,p) is defined as follows
9
: 

 

(i)      (k,p)  maxy {p
T
y : F(y)  k}. 

 

Prove that for each k > 0, (k,p) is a linearly homogeneous and convex function of p. 

 

2.  (Continuation of 1.)  Let y* solve the variable profit maximization problem (k*,p*)  maxy 

{p*
T
y : F(y)  k*} where k* > 0 and p* >> 0N.  Assume that (k*,p) is differentiable with respect 

to the components of p at the point p*; i.e., assume that the vector of first order partial derivatives 

p(k*,p*) exists.  Show that y* = p(k*,p*).  This result is known as Hotelling’s (1932; 594) 

Lemma.  Hint: define g(p)  p
T
y*  (k*,p) and show that g(p)  0 and g(p*) = 0. 

 

3.  Assume that the capital requirements function F(y) is linearly homogeneous; i.e., F(y) = F(y) 

for all  > 0.  (This means that the technology exhibits constant returns to scale.)  Under this 

assumption, show that (k,p) has the following decomposition:  for k > 0 and p >> 0N, 

  

(k,p) = k(1,p). 

 

The function (1,p)  (p) is known as the firm’s unit (capital) profit function.  By problem 1 

above, it too will be a linearly homogeneous function. 

 

4.  Using problem 2 above, it can be seen that the firm’s variable profit maximizing system of net 

supply functions, y(k,p), is equal to the vector of first order partial derivatives p(k,p), provided 

that (k,p) is differentiable with respect to the components of the variable price vector p.  If  

(k,p) is twice continuously differentiable with respect to the components of p, show that the N by 

N matrix of price derivatives of the net supply functions, py(k,p)  [yi(k,p)/pj], has the 

following properties: 

 

(a) py(k,p) = [py(k,p)]
T
 ; 

(b) [py(k,p)]p = 0N ; 

                                                           
8
 If there is no amount of capital that can produce a given vector of net outputs y, then we define F(y)  +.  For more 

on the properties of factor requirements functions, see Diewert (1974b). 
9
 We assume that for each k > 0, the lower level set of F defined as {y: F(y)  k } is a nonempty, closed and bounded 

set so that the maximum in (i) exists. 
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(c) z
T
py(k,p)z  0 for every vector z; 

(d) ei
T
py(k,p)ei  0 for i = 1,...,N where ei is the ith unit vector.  Provide an economic 

interpretation for these inequalities. 

 

5.  (Continuation of 4.)  Commodities i and j are said to be substitutes in production if yi(k,p)/pj < 

0 for i  j. Commodities i and j are said to be complements in production if yi(k,p)/pj > 0 for i  j.  

Commodities i and j are said to be unrelated in production if yi(k,p)/pj = 0. If N = 2, show that 

variable commodities 1 and 2 cannot be complements; i.e., they must be substitutes or be unrelated. 

 

 

Linearly homogeneous functions arise naturally in a variety of economic applications.  Moreover, 

even if we allow our production function or utility function f to be a general nonhomogeneous 

function, it is often of interest to allow f to have the capability to be flexible in the class of linearly 

homogeneous functions.   

 

Consider what happens to the general quadratic function f defined by (8) if we attempt to specialize 

it to become a linearly homogeneous functional form.  In order to make it homogeneous of degree 

one, we must set a0 = 0 and set A = 0NxN and the resulting functional form collapses down to the 

following linear function: 

 

(13) f(x) = a
T
x. 

 

But the f defined by (13) is not a flexible linearly homogeneous functional form!  Thus finding 

flexible linearly homogeneous functional forms is not completely straightforward. 

 

 Let us determine the minimal number of free parameters that a flexible linearly homogeneous 

functional form must have.  If both f and f* are linearly homogeneous (and twice continuously 

differentiable), then both functions will satisfy the restrictions (2)-(4).  In view of these restrictions, 

it can be seen that instead of f having to satisfy all 1+N+N
2
 of the equations (5)-(7), f need only 

satisfy the following N+N(N1)/2 = N(N+1)/2 equations: 

 

(14) f(x*) = f*(x*) ;                                     (N equations) 

(15) fij(x*) = f*ij(x*) for 1  i < j  N                (N(N1)/2 equations) 

 

where fij(x*)  
2
f(x*)/xixj.  Note that equations (15) are the equations in the upper triangle of the 

matrix equation (7) above.  If the upper triangle equations in (7) are satisfied, then by Young’s 

Theorem, the lower triangle equations will also be satisfied if equations (15) are satisfied.  The 

main diagonal equations in (7) will also be satisfied if equations (15) are satisfied: the diagonal 

elements fii(x*) are determined by the restrictions 
2
f(x*)x* = 0N and the f*ii(x*) are determined by 

the restrictions 
2
f*(x*)x* = 0N.   

 

Thus in order for f(x) (or c(p) or (p)) to be a  flexible linearly homogeneous functional form, it 

must have at least N + N(N1)/2 = N(N+1)/2 free parameters.  If it has exactly this number of free 

parameters, then we say that f is a parsimonious flexible functional form.   
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In the following sections, we shall give some examples of parsimonious flexible functional forms 

for unit cost functions.  These same functional forms can be used as parsimonious flexible 

functional forms for unit profit functions.
10

  Thus we are looking for linearly homogeneous 

functions c(p) that can satisfy the following N(N+1)/2 equations: 

 

(16) c(p*) = c*(p*) ;                                     (N equations) 

(17) cij(p*) = c*ij(p*)  for 1  i < j  N               (N(N1)/2 equations). 

 

Why is it important that functional forms used in applied economics be flexible?  From Shephard’s 

(1953; 11) Lemma, the producer’s system of cost minimizing input demand functions, x(y,p), is 

equal to the vector of first order partial derivatives of the cost function with respect of input prices, 

pC(y,p).  Thus the matrix of first order input demand price derivatives px(y,p) is equal to the 

matrix of second order partial derivatives 
2

ppC(y,p).  Hence, if the functional form for C is not 

flexible, price elasticities of input demand will be a priori restricted in some arbitrary way.
11

  

Many practical problems in applied economics depend crucially on estimates of elasticities and 

hence it is not appropriate to use estimates of elasticities that are restricted in some arbitrary 

manner. 

 

In the following sections, we will exhibit some examples of flexible functional forms. 

 

3. The Generalized Leontief Cost Function.  
 

Define the generalized Leontief unit cost function c(p) as follows
12

: 

 

(18)  c(p1,...,pN)  i=1
N
j=1

N
 bij pi

1/2
 pj

1/2
 ;       bij = bji for 1  i < j  N. 

 

Thus c is a quadratic form in the square roots of input prices and has N(N+1)/2 bij parameters. 

 

We need to determine whether the unit cost function c(p) defined by (18) is flexible; i.e., whether 

we can choose the bij so as to satisfy equations (16) and (17).  Upon differentiating (18), equations 

(16) and (17) become the following equations: 

 

(19)   ci(p*) = j=1
N
 bij (pi*)

(1/2)
(pj*)

1/2
   = c*i(p*) ;                  i = 1,...,N; 

(20)  cij(p*) = (1/2) bij (pi*)
(1/2)

(pj*)
(1/2)

 = c*ij(p*) ;               1  i < j  N. 

 

Use equations (20) to determine bij for 1  i < j  N.  Then use equations (19) to solve for the bii for 

i = 1,...,N.  This proves that the c(p) defined by (18) is flexible.  Since it has only N(N+1)/2 

parameters, it is also parsimonious.  

 

In a production study where there is only one output and N inputs and the assumption of 

competitive cost minimization is justified, given period t data on input demands, xi
t
, input prices, pi

t
 

                                                           
10

 The only difference is that the concavity in prices property for unit cost functions must be replaced by the convexity 

in prices property for unit profit functions. 
11

 A similar comment applies in the profit function context; unless the variable profit function (k,p) is flexible, 

estimates of elasticities of net supply will be arbitrarily restricted. 
12

 This functional form was introduced by Diewert (1971). 
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and on output produced, y
t
, then the unknown parameters in (18) can be estimated by using the 

following N estimating equations: 

 

(21) xi
t
/y

t
 = j=1

N
 bij (pj

t
/pi

t
)
1/2

 + ei
t
 ;                              i = 1,...,N, 

 

where the ei
t
 are stochastic error terms for i = 1,...,N. 

 

Note that bij in equation i should equal bji in equation j.  These cross equation symmetry restrictions 

can be imposed in the estimation procedure or we could test for their validity. 

 

After estimating the bij, it is necessary to check whether 
2
c(p

t
) is negative semidefinite at each 

data point p
t
.
13

  Thus it will be necessary to calculate the second order derivatives of c at each data 

point.  Differentiating the c(p) defined by (18) yields the following formulae for the derivatives: 

 

(22) cij(p
t
) = (1/2) bij (pi

t
pj

t
)
(1/2)

                                   for i  j ; 

        cii(p
t
) = (1/2) ki,k=1

N
 bik (pi

t
)
(3/2)

(pk
t
)
(1/2)

;         for i = 1,...,N. 

 

Note that the bii do not appear in the formulae (22) for the second derivatives of the generalized 

Leontief unit cost function.  Note also if all bij = 0 for i  j, then the functional form defined by (18) 

collapses down to the no substitution Leontief (1941) functional form
14

.  Under these restrictions, 

the input demand functions defined by (21) collapse down to the following system of equations: 

 

(23) xi
t
/y

t
 = bii + ei

t
 ;                              i = 1,...,N. 

 

Thus input demands are not affected by changes in input prices if the producer’s cost function has 

the Leontief functional form. 

 

Problems. 
 

6. Let N = 2 and try to determine necessary and sufficient conditions on the parameters b11, b12 and 

b22 that will make the generalized Leontief unit cost function defined by (18), c(p1,p2), concave in 

the input prices (p1,p2).  Look at the system of estimating equations (21) when N = 2.  Can you 

determine a simple method for making sure that your estimated generalized Leontief unit cost 

function will satisfy the concavity property? 

 

7. Determine a simple set of sufficient conditions that will make the generalized Leontief unit cost 

function defined by (18) concave in p for an arbitrary N over the set S  {p : p >> 0N}. 

 

4. The Translog Unit Cost Function. 
 

The translog unit cost function, c(p), is defined as follows:
15

 

 

                                                           
13

 A necessary and sufficient condition for a twice continuously differentiable c(p) to be concave over a convex set S is 

that 
2
c(p) be negative semidefinite for all p belonging to S.  

14
 This functional form was actually used by Walras (1954; 243); the first edition of this book was published in 1874. 

15
 This functional form is due to Christensen, Jorgenson and Lau (1971) (1975). 
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(24) lnc(p)  0 + i=1
N
 i lnpi + (1/2) i=1

N
 j=1

N
 ij lnpi lnpj  

 

where the parameters i and ij satisfy the following restrictions: 

 

(25) ij = ji ;           1  i < j  N ;                                   (N(N1)/2 symmetry restrictions) 

(26) i=1
N
 i = 1 ;                                                           (1 restriction) 

(27) j=1
N
 ij = 0 ;  i = 1,...,N                                          (N restrictions). 

 

Note that the symmetry restrictions (25) and the restrictions (27) imply the following restrictions: 

 

(28) i=1
N
 ij = 0 ;  j = 1,...,N. 

 

There are 1+N i parameters and N
2
 ij parameters.  However, the restrictions (25)-(27) mean that 

there are only N independent i parameters and N(N1)/2 independent ij parameters, which is the 

minimal number of parameters required for a unit cost function to be flexible.   

 

We show that the translog unit cost function c(p) defined by (24)-(27) is linearly homogeneous; i.e., 

we need to show that c(p) = c(p) for  > 0 and p >> 0N.  Thus, we need to show that 

 

(29) lnc(p) = ln[c(p)] = ln + lnc(p)                         for  > 0 and p >> 0N. 

 

Using definition (24), we have 

 

(30) lnc(p1,..., pN) = 0 + i=1
N
 i lnpi + (1/2) i=1

N
 j=1

N
 ij lnpi lnpj 

        = 0 + i=1
N
 i[ln+lnpi] + (1/2) i=1

N
 j=1

N
 ij[ln+lnpi][ln+lnpj] 

        = 0 + i=1
N
 i[ln]+i=1

N
 i lnpi + (1/2) i=1

N
 j=1

N
 ij[ln+lnpi][ln+lnpj] 

        = 0 + 1 [ln]+i=1
N
 i lnpi + (1/2) i=1

N
 j=1

N
 ij[ln+lnpi][ln+lnpj]           using (26) 

        = ln + 0+i=1
N
 i lnpi + (1/2) i=1

N
 j=1

N
 ij[ln][ln]  

          + (1/2) i=1
N
 j=1

N
 ij[ln][lnpj]+ (1/2) i=1

N
 j=1

N
 ij[lnpi][ln] 

          + (1/2) i=1
N
 j=1

N
 ij[lnpi][lnpj] 

        = ln + 0+i=1
N
 i lnpi + (1/2) i=1

N
 [j=1

N
 ij][ln][ln]  

          + (1/2) j=1
N
 [i=1

N
 ij][lnpj][ln] + (1/2) i=1

N
 [j=1

N
 ij][lnpi][ln] 

          + (1/2) i=1
N
 j=1

N
 ij[lnpi][lnpj] 

        = ln + 0+i=1
N
 i lnpi + (1/2) i=1

N
 [0][ln][ln]  

          + (1/2) j=1
N
 [0][lnpj][ln] + (1/2) i=1

N
 [0][lnpi][ln] 

          + (1/2) i=1
N
 j=1

N
 ij[lnpi][lnpj]                                         using (27) and (28) 

        = ln + 0+i=1
N
 i lnpi + (1/2) i=1

N
 j=1

N
 ij[lnpi][lnpj] 

        = ln + lnc(p)                                                                       using definition (24) 

 

which establishes the linear homogeneity property (29).  Thus the restrictions (25)-(27) are just the 

right ones to imply the linear homogeneity of the translog unit cost function. 

 

To establish the flexibility of the translog unit cost function c(p) defined by (24)-(27), we need only 

solve the following system of equations, which is equivalent to the N(N+1)/2 equations defined by 

(16) and (17): 
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(31) lnc(p*) = lnc*(p*) ;                                                                         (1 equation) 

(32) lnc(p*)/lnpi = lnc*(p*)/lnpi ;                     i = 1,2,...,N1;      (N1 equations) 

(33) 
2
lnc(p*)/lnpilnpj = 

2
lnc*(p*)/lnpilnpj ;  1  i < j  N ;         (N(N1)/2 equations). 

 

Upon differentiating the translog unit cost function defined by (24), we see that equations (32) are 

equivalent to the following equations: 

 

(34) i + j=1
N
 ij lnpj = lnc*(p*)/lnpi ;                     i = 1,2,...,N1. 

 

Differentiating the translog unit cost function again, we find that equations (33) are equivalent to 

the following equations: 

 

(35) ij = 
2
lnc*(p*)/lnpilnpj ; 1  i < j  N. 

 

Now use equations (35) to determine the ij for 1  i < j  N.  Now use the symmetry restrictions 

(25) to determine the ij for 1  j < i  N.  Now use equations (27) to determine the ii for i = 

1,2,...,N.  With the entire N by N matrix of the ij now determined, use equations (34) in order to 

determine the i for i = 1,2,...,N1.  Now use equation (26) to determine N.  Finally, use equation 

(31) to determine 0. 

 

We turn our attention to the problems involved in obtaining estimates for the unknown parameters 

i and ij, which occur in the definition of the translog unit cost function, c(p) defined by (24).  In 

the producer context, the total cost function C(y,p) is defined in terms of the unit cost function c(p) 

as follows: 

 

(36) C(y,p)  yc(p). 

 

Taking logarithms on both sides of (36) yields: 

 

(37)  lnC(y,p) = lny + lnc(p)  

                      = lny + 0 + i=1
N
 i lnpi + (1/2) i=1

N
 j=1

N
 ij lnpi lnpj  

 

where we have replaced ln c(p) using (24).  The corresponding system of cost minimizing input 

demand functions x(y,p) is obtained using Shephard’s Lemma: 

 

(38) x(y,p)  pC(y,p) = y pc(p). 

 

Suppose that in period t, observed output is y
t
, the vector of observed input prices is p

t
 >> 0N and 

the vector of observed input demands is x
t
 > 0N.  Thus the period t observed cost is: 

 

(39)  Ct
  p

tT
x

t
  i=1

N
 pi

t
xi

t
. 

 

Now evaluate (37) at the period t data and add an error term, e0
t
.  Using (39), (37) evaluated at the 

period t data becomes the following estimating equation: 
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(40) lnC
t
 = lny

t
 + 0 + i=1

N
 i lnpi

t
 + (1/2) i=1

N
 j=1

N
 ij lnpi

t
 lnpj

t
 + e0

t
 ; t = 1,...,T.  

 

Note that (40) is linear in the unknown parameters. 

 

In order to obtain additional estimating equations, we have to use the input demand functions, 

xi(y,p)  yc(p)/pi for i = 1,...,N; (see equations (38) above).  The ith input share function, si(y,p), 

is defined as: 

 

(41) si(y,p)  pixi(y,p)/C(y,p)                                        i = 1,...,N 

                  = pi[yc(p)/pi]/C(y,p)                                using (38) 

                  = pi[yc(p)/pi]/yc(p)                                  using (36) 

                  = pi[c(p)/pi]/c(p) 

                  = lnc(p)/lnpi                                                     

                  = i + j=1
N
 ij lnpj                                      upon differentiating the c(p) defined by (24). 

 

Now evaluate both sides of (41) at the period t data and add error terms ei
t
 to obtain the following 

system of estimating equations: 

 

(42) si
t
  pi

t
xi

t
/C

t
 = i + j=1

N
 ij lnpj

t
 + ei

t
 ;                       i = 1,...,N. 

 

Note that equations (42) are also linear in the unknown parameters.  Obviously, the N estimating 

equations in (42) could be added to the single estimating equation (40) in order to obtain N+1 

estimating equations with cross equation equality constraints on the parameters i and ij.  

However, since total cost in any period t, C
t
, equals the sum of the individual expenditures on the 

inputs
16

, i=1
N
 pi

t
xi

t
, the observed input shares si

t
  pi

t
xi

t
/C

t
 will satisfy the following constraint for 

each period t: 

 

(43) i=1
N
 si

t
 = 1. 

 

Thus the stochastic error terms ei
t
 in equations (42) cannot all be independent.  Hence we must drop 

one estimating equation from (42).  Thus equation (40) and any N1 of the N equations in (42) may 

be used as a system of estimating equations in order to determine the parameters of the translog 

unit cost function.
17

 

 

We now turn our attention to the problem of deriving a formula for the price elasticities of demand, 

xi(y,p)/pj, given that the unit cost function has the translog functional form defined by (24)-(27).  

                                                           
16

 This identity explains why we did not add the counterpart to (40) as an estimating equation to the estimating 

equations (21) in the previous section. 
17

 In situations where N is large relative to the number of observations T, maximum likelihood estimation of equation 

(40) and N1 of the equations (41) can fail if a general variance covariance matrix has to be estimated for the error 

terms in these equations.  The problem is that all of the unknown economic parameters are contained in equation (40) 

and as a result, the estimated squared residuals in this equation will tend to be small relative to the estimated squared 

residuals in equations (41), where each equation has only a few unknown economic parameters.  Hence equation (40) 

can suffer from multicollinearity problems and the small apparent variance of the residuals in this equation lead to the 

maximum likelihood estimation procedure giving too much weight to equation (40) relative to the other equations.  

Under these conditions, the resulting elasticities may be erratic and not satisfy the appropriate curvature conditions. 
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Using the equations in (41) above, we have the following expressions for the ith input share 

functions, si(y,p): 

 

(44) si(y,p) = pi xi(y,p)/C(y,p) = lnc(p)/lnpi = i + j=1
N
 ij lnpj ;              i = 1,...,N. 

 

For j  i, differentiate the ith equation in (44) with respect to the log of pj and we obtain the 

following equations: 

 

(45) si(y,p)/lnpj = pi [xi(y,p)/C(y,p)]/lnpj = ij ;                                       i  j. 

 

Hence 

 

(46) ij = pi [xi(y,p)/C(y,p)]/lnpj                                                                   i  j 

            = pipj [xi(y,p)/C(y,p)]/pj 

            = pipj {[1/C(y,p)][xi(y,p)/pj]  xi(y,p)[1/C(y,p)]
2
[C(y,p)/pj]} 

            = [pixi(y,p)/C(y,p)]{ln xi(y,p)/lnpj}  [pixi(y,p)/C(y,p)][ pjxj(y,p)/C(y,p)] 

                                                                                 using Shephard’s Lemma, xj(y,p) = C(y,p)/pj 

            = si(y,p){lnxi(y,p)/lnpj}  si(y,p) sj(y,p). 

 

Equations (46) can be rearranged to give us the following formula for the cross price elasticities of 

input demand: 

 

(47) lnxi(y,p)/lnpj = [si(y,p)]
1

 ij + sj(y,p) ;                                   i  j. 

 

Now differentiate the ith equation in (44) with respect to the log of pi and get the following 

equations: 

 

(48) ii = pi [pixi(y,p)/C(y,p)]/pi                                                                                       i = 1,...,N 

            = pi {[xi(y,p)/C(y,p)] + [pi/C(y,p)][xi(y,p)/pi]  [pixi(y,p)/C(y,p)
2
][C(y,p)/pi]} 

            = pi {[xi(y,p)/C(y,p)] + [pi/C(y,p)][xi(y,p)/pi]  [pixi(y,p)/C(y,p)
2
][xi(y,p)]} 

                                                                                  using Shephard’s Lemma, xi(y,p) = C(y,p)/pi 

            = pi xi(y,p)/C(y,p) + [pi xi(y,p)/C(y,p)][lnxi(y,p)/lnpi]  [pixi(y,p)/C(y,p)]
2
 

            = si(y,p) + si(y,p)[lnxi(y,p)/lnpi]  si(y,p)
2
. 

 

Equations (48) can be rearranged to give us the following formula for the own price elasticities of 

input demand: 

 

(49) lnxi(y,p)/lnpi = [si(y,p)]
1

 ii + si(y,p)  1 ;                                            i = 1,...,N. 

 

Thus given econometric estimates for the i and ij, which we denote by i
*
 and ij

*
, the estimated 

or fitted shares in period t, si
t*

 are defined using these estimates and equations (44) evaluated at the 

period t data:  

 

(50) si
t*

  i
*
 + j=1

N
 ij

*
 lnpj

t
 ;                                             i = 1,...,N ; t = 1,...,T. 
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Now use equations (47) evaluated at the period t data and econometric estimates to obtain the 

following formula for the period t cross elasticities of demand, eij
t
: 

 

(51) eij
t
  lnxi(y

t
,p

t
)/lnpj = [si

t*
]
1

 ij
*
 + sj

t*
 ;                                   i  j. 

 

Similarly, use equations (49) evaluated at the period t data and econometric estimates to obtain the 

following formula for the period t own elasticities of demand, eii
t
: 

 

(52) eii
t
  lnxi(y

t
,p

t
)/lnpi = [si

t*
]
1

 ii
*
 + si

t*
  1 ;                                          i = 1,...,N. 

 

We can also obtain an estimated or fitted period t cost, C
t*

, by using our econometric estimates for 

the parameters and by exponentiating the right hand side of the equation t in (40): 

 

(53) C
t*

  exp[lny
t
 + 0

*
 + i=1

N
 i

*
 lnpi

t
 + (1/2) i=1

N
 j=1

N
 ij

*
 lnpi

t
 lnpj

t
] ;           t = 1,...,T. 

 

Finally, our fitted period t shares si
t*

 defined by (50) and our fitted period t costs C
t*

 defined by (53) 

can be used in order to obtain estimated or fitted period t input demands, xi
t*

, as follows: 

 

(54) xi
t*

  C
t*

si
t*

/pi
t
 ;                                                                i = 1,...,N ; t = 1,...,T. 

 

Given the matrix of period t estimated input price elasticities of demand, [eij
t
], we can readily 

calculate the matrix of period t estimated input price derivatives, px(y
t
,p

t
) = 

2
ppC(y

t
,p

t
).  Our 

estimate for element ij of 
2

ppC(y
t
,p

t
) is: 

 

(55) Cij
t*

  eij
t
 xi

t*
/pj

t
 ;                                                    i,j = 1,...,N ; t = 1,...,T 

 

where the estimated period t elasticities eij
t
 are defined by (51) and (52) and the fitted period t input 

demands xi
t*

 are defined by (54).  Once the estimated input price derivative matrices [Cij
t*

] have 

been calculated, then we may check whether each of them is negative semidefinite using 

determinantal conditions or by checking if all of the eigenvalues of each matrix are zero or 

negative.  Unfortunately, very frequently these negative semidefiniteness conditions will fail to be 

satisfied for both the translog and generalized Leontief functional forms. Hence, in the following 

section, we study a functional form where these curvature conditions can be imposed without 

destroying the flexibility of the functional form. 

 

5. The Normalized Quadratic Unit Cost Function. 
 

The normalized quadratic unit cost function c(p) is defined as follows for p >> 0N:
18

 

 

(56) c(p)  b
T
p + (1/2)p

T
Bp/

T
p 

 

where b
T
  [b1,...,bN] and 

T
  [1,...,N] are parameter vectors and B  [bij] is a matrix of 

parameters.  The vector  and the matrix B satisfy the following restrictions: 
                                                           
18

 This functional form was introduced by Diewert and Wales (1987; 53) where it was called the Symmetric 

Generalized McFadden functional form.   Additional material on this functional form can be found in Diewert and 

Wales (1988a) (1988b) (1992) (1993).   
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(57)  > 0N ; 

(58) B = B
T
 ; i.e., the matrix B is symmetric; 

(59) Bp* = 0N for some p* >> 0N. 

 

In most empirical applications, the vector of nonnegative but nonzero parameters  is fixed a priori.  

The two most frequent a priori choices for  are   1N, a vector of ones or   (1/T) t=1
T
 x

t
, the 

sample mean of the observed input vectors in the producer context or the sample mean of the 

observed commodity vectors in the consumer context.  The two most frequent choices for the 

reference price vector p* are p*  1N or p*  p
t
 for some period t; i.e., in this second choice, we 

simply set p* equal to the observed period t price vector. 

 

Assuming that  has been predetermined, there are N unknown parameters in the b vector and 

N(N1)/2 unknown parameters in the B matrix, taking into account the symmetry restrictions (58) 

and the N linear restrictions in (59).  Note that the c(p) defined by (56) is linearly homogeneous in 

the components of the input price vector p. 

 

Another possible way of defining the normalized quadratic unit cost function is as follows: 

 

(60) c(p)  (1/2) p
T
Ap/

T
p 

 

where the parameter matrix A is symmetric; i.e., A = A
T
  [aij] and  > 0N as before.  Assuming 

that the vector of parameters  has been predetermined, the c(p) defined by (60) has N(N+1)/2 

unknown aij parameters. 

 

Comparing (56) with (60), it can be seen that (60) has dropped the b vector but has also dropped the 

N linear constraints (59).  It can be shown that the model defined by (56) is a special case of the 

model defined by (60).  To show this, given (56), define the matrix A in terms of B, b and  as 

follows: 

 

(61) A  B + [b
T
 + b

T
]. 

 

Substituting (61) into (60), (60) becomes: 

 

(62) c(p) = (1/2)p
T
{B + [b

T
 + b

T
]}p/

T
p 

               = (1/2)p
T
Bp/

T
p + (1/2) p

T
[b

T
 + b

T
]p/

T
p 

               = (1/2)p
T
Bp/

T
p + (1/2){p

T
b

T
p + p

T
b

T
p}/

T
p 

               = (1/2)p
T
Bp/

T
p + (1/2){2p

T
b

T
p}/

T
p 

               = (1/2)p
T
Bp/

T
p + p

T
b 

 

which is the same functional form as (56).  However, we prefer to work with the model (56) rather 

than with the seemingly more general model (60) for three reasons: 

 

 The c(p) defined by (56) clearly contains the no substitution Leontief functional form as a 

special case (simply set B = 0NxN); 
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 the estimating equations that correspond to (56) will contain constant terms and 

 it is easier to establish the flexibility property for (56) than for (60). 

 

The first and second order partial derivatives of the normalized quadratic unit cost function defined 

by (56) are given by: 

 

(63) pc(p) = b + (
T
p)

1
Bp  (1/2)(

T
p)

2
p

T
Bp ; 

(64) 
2

ppc(p) = (
T
p)

1
B  (

T
p)

2
Bp

T
  (

T
p)

2
p

T
B + (

T
p)

3
 p

T
Bp

T
. 

 

We now prove that the c(p) defined by (56)-(59) (with  predetermined) is a flexible functional 

form at the point p*.  Using the restrictions (59), Bp* = 0N, we have p*
T
Bp* = p*

T
0N = 0.  Thus 

evaluating (63) and (64) at p = p* yields the following equations: 

 

(65) pc(p*) = b ; 

(66) 
2

ppc(p*) = (
T
p*)

1
B. 

 

We need to satisfy equations (16) and (17) above to show that the c(p) defined by (56)-(59) is 

flexible at p*.  Using (65), we can satisfy equations (16) if we choose b as follows: 

 

(67) b  c*(p*). 

 

Using (66), we can satisfy equations (17) by choosing B as follows: 

 

(68) B  (
T
p*) 

2
c*(p*). 

 

Since 
2
c*(p*) is a symmetric matrix, B will also be a symmetric matrix and so the symmetry 

restrictions (58) will be satisfied for the B defined by (68).  Moreover, since c*(p) is assumed to be 

a linearly homogeneous function, Euler’s Theorem implies that  

 

(69) 
2
c*(p*)p* = 0N. 

 

Equations (68) and (69) imply that the B defined by (68) satisfies the linear restrictions (59).  This 

completes the proof of the flexibility property for the normalized quadratic unit cost function. 

 

It is convenient to define the vector of normalized input prices, v
T
  [v1,...,vN] as follows: 

 

(70) v  (p
T
)

1
p. 

 

The system of input demand functions x(y,p) that corresponds to the normalized quadratic unit cost 

function c(p) defined by (56) can be obtained using Shephard’s Lemma in the usual way: 

 

(71) x(y,p) = y c(p). 

 

Using (71) and (63) evaluated at the period t data, we obtain the following system of estimating 

equations: 
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(72) x
t
/y

t
 = b + Bv

t
  (1/2)v

tT
Bv

t
 + e

t
 ;                                t = 1,...,T 

 

where x
t
 is the observed period t input vector, y

t
 is the period t output, v

t
  p

t
/

T
p

t
 is the vector of 

period t normalized input prices and e
t
  [e1

t
,...,eN

t
]

T
 is a vector of stochastic error terms.  Equations 

(72) can be used in order to statistically estimate the parameters in the b vector and the B matrix.  

Note that equations (72) are linear in the unknown parameters.  Note also that the symmetry 

restrictions (58) can be imposed in (72) or their validity can be tested. 

 

Once estimates for b and B have been obtained (denote these estimates by b
*
 and B

*
 respectively), 

then equations (72) can be used in order to generate a period t vector of fitted input demands, x
t*

 

say: 

 

(73) x
t*

  y
t
[b

*
 + B

*
v

t
  (1/2)v

tT
B

*
v

t
] ;                                        t = 1,...,T. 

 

Equations (64) and (71) may be used in order to calculate the matrix of period t estimated input 

price derivatives, px(y
t
,p

t
) = 

2
ppC(y

t
,p

t
).  Our estimate for 

2
ppC(y

t
,p

t
) is: 

 

(74) [Cij
t*

]  y
t
[(

T
p

t
)
1

B
*
  (

T
p

t
)
2

B
*
p

t


T
  (

T
p

t
)
2
p

tT
B

*
 + (

T
p

t
)
3

 p
tT

B
*
p

t


T
] ;    t = 1,...,T. 

 

Equations (73) and (74) may be used in order to obtain estimates for the matrix of period t input 

demand price elasticities, [eij
t
]: 

 

(75) eij
t
  lnxi(y

t
,p

t
)/lnpj = pj

t
 Cij

t*
/xi

t*
 ;                            i,j = 1,...,N ; t = 1,...,T 

 

where xi
t*

 is the ith component of the vector of fitted demands x
t*

 defined by (73). 

 

 There is one important additional topic that we have to cover in our discussion of the normalized 

quadratic functional form: what conditions on b and B are necessary and sufficient to ensure that 

c(p) defined by (56)-(59) is concave in the components of the price vector p? 

 

The function c(p) will be concave in p if and only if 
2
c(p) is a negative semidefinite matrix for 

each p in the domain of definition of c.  Evaluating (64) at p = p* and using the restrictions (59) 

yields: 

 

(76) 
2
c(p*) = (

T
p*)

1
B. 

 

Since  > 0N and p* >> 0N, 
T
p* > 0.  Thus in order for c(p) to be a concave function of p, the 

following necessary condition must be satisfied: 

 

(77) B is a negative semidefinite matrix. 

 

We now show that the necessary condition (77) is also sufficient to imply that c(p) is concave over 

the set of p such that p >> 0N.  Unfortunately, the proof is somewhat involved.
19

 

 

                                                           
19

 The method of proof is due to Diewert and Wales (1987). 
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Let p >> 0N.  We assume that B is negative semidefinite and we want to show that 
2
c(p) is 

negative semidefinite or equivalently, that  
2
c(p) is positive semidefinite.  Thus for any vector z, 

we want to show that  z
T


2
c(p)z  0.  Using (64), this inequality is equivalent to: 

 

(78)  (
T
p)

1 
z

T
Bz + (

T
p)

2
 z

T
Bp

T
z + (

T
p)

2
 z

T
p

T
Bz  (

T
p)

3
 p

T
Bpz

T


T
z  0          or 

 

(79)  (
T
p)

1 
z

T
Bz  (

T
p)

3
 p

T
Bp(

T
z)

2
   2(

T
p)

2
 z

T
Bp

T
z                         using B = B

T
. 

 

Define A   B.  Since B is symmetric and negative semidefinite by assumption, A is symmetric 

and positive semidefinite.  Thus there exists an orthonormal matrix U such that  

 

(80) U
T
AU =  ;       

(81) U
T
U    = IN 

 

where IN is the N by N identity matrix and  is a diagonal matrix with the nonnegative eigenvalues 

of A, i, i = 1,...,N, running down the main diagonal.  Now premultiply both sides of (80) by U and 

postmultiply both sides by U
T
.  Using (81), U

T
 = U

1
, and the transformed equation (80) becomes 

the following equation: 

 

(82) A = UU
T
 

            = U
1/2 


1/2 
U

T
 

            = U
1/2

 U
T
U 

1/2 
U

T
                                                  since U

T
U = IN 

            = S S 

 

where 
1/2

 is the diagonal matrix that has the nonegative square roots i
1/2

 of the eigenvalues of A 

running down the main diagonal and the symmetric square root of A matrix S is defined as 

 

(83) S  U
1/2

 U
T
. 

 

If we replace  B in (79) with A, the inequality that we want to establish becomes 

 

(84) 2(
T
p)

1
 z

T
Ap

T
z  z

T
Az + (

T
p)

2
 p

T
Ap(

T
z)

2
 

 

 where we have also multiplied both sides of (79) by the positive number 
T
p in order to derive 

(84) from (79). 

 

Recall the Cauchy-Schwarz inequality for two vectors, x and y: 

 

(85) x
T
y  (x

T
x)

1/2
(y

T
y)

1/2
. 

 

Now we are ready to establish the inequality (84).  Using (82), we have: 

 

(86) (
T
p)

1
 z

T
Ap

T
z = (

T
p)

1
 z

T
SSp

T
z 

                                    (z
T
SS

T
z)

1/2
 ([

T
p]

2
 [

T
z]

2
 p

T
S

T
Sp)

1/2
 

                                                                          using (85) with x
T
  z

T
S and y  (

T
p)

1
 (

T
z) Sp  
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                                   = (z
T
SSz)

1/2
 ([

T
p]

2
 [

T
z]

2
 p

T
SSp)

1/2
                                       using S = S

T
 

                                   = (z
T
Az)

1/2
 ([

T
p]

2
 [

T
z]

2
 p

T
Ap)

1/2
                                using (82), A = SS 

                                    (1/2)(z
T
Az) + (1/2)[

T
p]

2
 [

T
z]

2
 (p

T
Ap) 

                                            using the nonnegativity of z
T
Az, p

T
Ap, the positivity of 

T
z  

                                            and the Theorem of the Arithmetic and Geometric Mean. 

 

The inequality (86) is equivalent to the desired inequality (84).  

 

Thus the normalized quadratic unit cost function defined by (56)-(59) will be concave over the set 

of positive prices if and only if the symmetric matrix B is negative semidefinite.  Thus after 

econometric estimates of the elements of B have been obtained using the system of estimating 

equations (72), we need only check that the resulting estimated B matrix is negative semidefinite. 

 

However, suppose that the estimated B matrix is not negative semidefinite.  How can one 

reestimate the model, impose negative semidefiniteness on B, but without destroying the flexibility 

of the normalized quadratic functional form? 

 

The desired imposition of negative semidefiniteness can be accomplished using a technique due to 

Wiley, Schmidt and Bramble (1973): simply replace the matrix B by 

 

(87) B   AA
T
 

 

where A is an N by N lower triangular matrix; i.e., aij = 0 if i < j.
20

   

 

We also need to take into account the restrictions (59), Bp* = 0N.  These restrictions on B can be 

imposed if we impose the following restrictions on A: 

 

(88) A
T
p* = 0N. 

 

To show how this curvature imposition technique works, let p* = 1N and consider the case N = 2.  

In this case, we have: 

 

A  








2221

11 0

aa

a
 and A

T
 = 









22

2111

0 a

aa
. 

 

The restrictions (88) become: A
T
 12 = 







 

22

2111

a

aa
 = 









0

0
  

 

 

and hence we must have a21 =  a11 and a22 = 0.  Thus in this case,  

 

                                                           
20

 Since z
T
AA

T
z = (A

T
z)

T
(A

T
z) = y

T
y  0 for all vectors z, AA

T
 is positive semidefinite and hence  AA

T
 is negative 

semidefinite.  Diewert and Wales (1987; 53) show that any positive semidefinite matrix can be written as AA
T
 where A 

is lower triangular.  Hence, it is not restrictive to reparameterize an arbitrary negative semidefinite matrix B as  AA
T
.  
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(89) B   AA
T
 =  









 0

0

11

11

a

a







 

00

1111 aa
 =  












2

11

2

11

2

11

2

11

aa

aa
 = a11

2
 













11

11
. 

 

Equations (89) show how the elements of the B matrix can be defined in terms of the single 

parameter, a11
2
.  Note that with this reparameterization of the B matrix, it will be necessary to use 

nonlinear regression techniques rather than modifications of linear regression techniques.  This 

turns out to be the cost of imposing the correct curvature conditions on the unit cost function. 

                          

In the following section, we indicate how the functional forms described in sections 2-4 above can 

be adapted to estimate consumer preferences. 

 

6. The Estimation of Consumer Preferences: The General Framework 
 

The cost function and production function framework described in the previous sections can be 

readily adapted to the problem of estimating consumer preferences: simply replace output y by 

utility u, reinterpret the production function f  as a utility function, reinterpret the input vector x as a 

vector of commodity demands and reinterpret the vector of input prices p as a vector of commodity 

prices.  With these changes, the producer’s cost minimization problem (12) becomes the following 

problem of minimizing the cost or expenditure of attaining a given level of utility u: 

 

(90) C(u,p)  minx {p
T
x : f(x)  u }. 

 

If the cost function is differentiable with respect to the components of the commodity price vector 

p, then Shephard’s (1953; 11) Lemma applies and the consumer’s system of commodity demand 

functions as functions of the chosen utility level u and the commodity price vector p, x(u,p), is 

equal to the vector of first order partial derivatives of the cost or expenditure function C(u,p) with 

respect to the components of p: 

 

(91) x(u,p) = pC(u,p). 

 

The system of demand functions x(u,p) defined in (91) are known as Hicksian
21

 demand functions.  

 

Thus it seems that we can adapt the theory of cost and production functions used in sections 2-4 

above in a very straightforward way and estimate consumer preferences in exactly the same way 

that we estimated production functions or their dual cost functions.  Thus we need only replace 

period t output, y
t
, by period t utility, u

t
, in the estimating equations (21) (for the generalized 

Leontief cost function) and (72) (for the normalized quadratic cost function) and reinterpret the 

resulting equations.  However, there is a problem: the period t output level y
t
 is an observable 

variable but the period t utility level u
t
 is not observable! 

 

However, this problem can be solved.  We need only equate the cost function C(u,p) to the 

consumer’s observable expenditure in the period under consideration, Y say, and solve the 

resulting equation for u as a function of Y and p, say u = g(Y,p).  Thus u = g(Y,p) is the solution to: 

 

                                                           
21

 See Hicks (1946; 311-331). 
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(92) C(u,p) = Y 

 

and the resulting solution function g(Y,p) is the consumer’s indirect utility function.  Now replace 

the u in the system of Hicksian demand functions (91) by g(Y,p) and we obtain the consumer’s 

system of (observable) market demand functions: 

 

(93) x = pC(g(Y,p),p). 

 

We will illustrate how this general framework can be implemented in the context of several specific 

functional forms for the cost function. 

 

7. The Generalized Leontief Cost Function for Homothetic Preferences. 

 

We illustrate the above procedure for the generalized Leontief cost function defined in section 2 

above.  For this functional form, equation (92) becomes: 

 

(94) u i=1
N
j=1

N
 bij pi

1/2
 pj

1/2
 = Y ;                         (bij = bji for all i and j) 

 

and the u solution to this equation is: 

 

(95) u = g(Y,p) = Y/[i=1
N
j=1

N
 bij pi

1/2
 pj

1/2
]. 

 

Substituting (95) into (91) leads to the following system of market demand functions: 

 

(96) xi = [j=1
N
 bij (pj/pi)

1/2
] Y/[i=1

N
j=1

N
 bij pi

1/2
 pj

1/2
] ;                          i = 1,...,N. 

 

Evaluating (96) at the period t data and adding a stochastic error term ei
t
 to equation i in (96) for i = 

1,...,N leads to the following system of estimating equations:
22

 

 

(97) xi
t
 = [j=1

N
 bij (pj

t
/pi

t
)
1/2

] Y
t
/[i=1

N
j=1

N
 bij (pi

t
)
1/2

 (pj
t
)
1/2

] + ei
t
 ;         t = 1,...,T ; i = 1,...,N. 

 

8. The Normalized Quadratic Cost Function for Homothetic Preferences. 
 

We can also illustrate the above procedure for the normalized quadratic cost function defined in 

section 4 above.  For this functional form, equation (92) becomes: 

 

(98) u[b
T
p + (1/2)(

T
p)

1
p

T
Bp] = Y 

 

and the u solution to this equation is: 

 

(99) u = g(Y,p) = Y/[b
T
p + (1/2)(

T
p)

1
p

T
Bp]. 

 

                                                           
22

 Since Y
t
 will typically equal i=1

N
 pi

t
xi

t
, it can be verified that the errors in (97) for any period t cannot be 

independently distributed  since they must satisfy the restriction i=1
N
 pi

t
ei

t
 = 0 for each t; see (104) below.  It is also 

necessary to impose a normalization on the bij since the right hand side of each equation in (97) is homogeneous of 

degree 0 in the bij.  We will deal with the normalization problem in section 9 below. 
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Substituting (99) into (91) leads to the following system of market demand functions: 

 

(100) x = [b + Bv  (1/2)v
T
Bv][(

T
p)

1
Y]/[b

T
v + (1/2)v

T
Bv] 

 

where v  (
T
p)

1
p = p/

T
p is the vector of normalized prices. Evaluating (100) at the period t data 

and adding a vector of stochastic error terms e
t
 to the system of equations (100) leads to the 

following system of estimating equations: 

 

(101) x
t
 = [b + Bv

t
  (1/2)v

tT
Bv

t
][(

T
p

t
)
1

Y
t
]/[b

T
v

t
 + (1/2)v

tT
Bv

t
] + e

t
 ;       t = 1,...,T 

 

where v
t
  p

t
/

T
p

t
 for t = 1,...,T. 

 

In practice, period t “income” Y
t
 is defined to be period t expenditure, p

tT
x

t
 = i=1

N
pi

t
xi

t
; i.e., we 

have: 

 

(102) Y
t
 = p

tT
x

t
 = i=1

N
pi

t
xi

t
 ;                                                                          t = 1,...,T. 

 

However, the identities (102) create some econometric difficulties: namely, we cannot assume that 

all of the error terms, ei
t
, in each period are independently distributed.  Thus if we premultiply both 

sides of equation i for period t in (97) by pi
t
 and sum over i, we obtain the following identity using 

(102): 

 

(103) Y
t
 = Y

t
 + i=1

N
 pi

t
ei

t
 ;                                              t = 1,...,T 

 

which in turn implies that the period t error terms ei
t
 satisfy the following exact identity: 

 

(104) i=1
N
 pi

t
ei

t
 = 0 ;                                                        t = 1,...,T. 

 

In a similar fashion, premultiply both sides of the period t equation in (101) by p
tT

, we obtain the 

following equations: 

 

(105) p
tT

x
t
 = p

tT
[b + Bv

t
  (1/2)v

tT
Bv

t
][(

T
p

t
)
1

Y
t
]/[b

T
v

t
 + (1/2)v

tT
Bv

t
] + p

tT
e

t
 ;       t = 1,...,T or 

            Y
t
  = p

tT
 

T
p

t
(

T
p

t
)
1

[b + Bv
t
  (1/2)v

tT
Bv

t
][(

T
p

t
)
1

Y
t
]/[b

T
v

t
 + (1/2)v

tT
Bv

t
] + p

tT
e

t
     or 

            Y
t
  = v

tT
 

T
p

t
[b + Bv

t
  (1/2)v

tT
Bv

t
][(

T
p

t
)
1

Y
t
]/[b

T
v

t
 + (1/2)v

tT
Bv

t
] + p

tT
e

t
                  or 

            Y
t
  = v

tT
 [b + Bv

t
  (1/2)v

tT
Bv

t
][Y

t
]/[b

T
v

t
 + (1/2)v

tT
Bv

t
] + p

tT
e

t
                                     or 

            Y
t
 = [b

T
v

t
 + (1/2)v

tT
Bv

t
][Y

t
]/[b

T
v

t
 + (1/2)v

tT
Bv

t
] + p

tT
e

t
                                                   or 

            Y
t
 = Y

t
 + p

tT
e

t
 

 

which in turn implies that the period t error term vector e
t
 satisfies the following exact identity, p

tT
e

t
 

= 0 for t = 1,...,T, which is the same identity as (104). 

 

Thus for both the generalized Leontief and the normalized quadratic cost function models the 

period t error vectors satisfy an exact identity and hence in both models, we must drop one 

estimating equation; i.e., we must drop one of the estimating equations in (97) and one of the 

estimating equations in (101).  Thus there are some differences between the cost function models in 

the producer context and in the consumer context. 
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9.  The Problem of Cardinalizing Utility. 

 

There is another significant difference between the producer models discussed in the previous 

sections and the consumer models discussed in the present section.  Look closely at the estimating 

equations (97) and (101).  From (97), it can be seen that the right hand side explanatory variables 

are homogeneous of degree 0 in the bij coefficients.  Thus the regression will not be able to 

determine the scale of the bij parameters.  Similarly, by looking at the right hand side of (101), it 

can be seen that the right hand side explanatory variables are homogeneous of degree 0 in the 

components of the b vector and the B matrix.  Thus the regression will not be able to determine the 

scale of the parameters in b and B.  This indeterminacy means that we require at least one 

additional restriction or normalization on the parameters of each of these models.  Basically, what 

we have to do is cardinalize our measure of utility in some way.   

 

There are two simple ways of cardinalizing utility
23

: 

 

 Pick a positive reference quantity vector x* >> 0N. Let the period t consumption vector x
t
 be on 

the indifference surface I(x
t
)  {x: f(x) = f(x

t
)}.  Let 

t
x* be on the I(x

t
) indifference curve.  

Then measure period t utility as 
t
. 

 Pick a positive reference price vector p* >> 0N.  Then normalize the consumer’s cost function 

C(u,p) so that it has the following property: 

 

(106) C(u,p*) = u for all u > 0. 

 

The meaning of (106) is that if the consumer faces the reference price vector p*, then his or her 

utility will be equal to his or her “income” or expenditure on commodities at those reference prices.  

Thus if relative prices never changed, the consumer’s utility is proportional to the size of the 

observed budget set.  This serves to cardinalize utility for all consumption vectors.  Samuelson 

(1974) called this type of cardinalization of utility, money metric utility.
24

 

 

We will follow the money metric method of scaling utility.  For the generalized Leontief model, the 

restriction (106) implies the following normalization of the bij: 

 

(107) i=1
N
j=1

N
 bij pi*

1/2
 pj*

1/2
 = 1. 

 

For the normalized quadratic model, the restriction (106) implies the following normalization of the 

components of the b vector and the B matrix: 

 

(108) b
T
p* + (1/2)p*

T
Bp*/

T
p* = 1. 

 

If we choose the reference vector p* in (106) to be the same as the reference vector p* which 

occurred in (59), then Bp* = 0N and the cardinalization restriction (108) becomes: 

 

(109) b
T
p* = 1. 

                                                           
23

 The two methods are equivalent in the case of homothetic preferences. 
24

 The basic idea can be traced back to Hicks (1941-42). 
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Problems. 
 

8. Adapt the translog unit cost function model presented in section 3 above to the consumer 

context.  Hint: equations (42) do not depend on utility!  However, you need to choose p* in a 

specific way in order to impose money metric utility scaling. 

 

9. Suppose the consumer’s cost function has the following form: 

 

(i) C(u,p) = uc(p) 

 

where c(p) is a well behaved unit cost function.  Assuming that c(p) is differentiable, show that the 

consumer’s system of market demand functions has the following form: 

 

(ii) x(Y,p) = Y pc(p)/c(p). 

 

Show that lnxi(Y,p)/lnY = 1 for i = 1,...,N; i.e., if the consumer has preferences given by (i),  then 

all income elasticities of demand are one!  This contradicts Engel’s Law; i.e., that the 

income elasticity of demand for food is less than one. 

 

10.  Modeling Nonhomothetic Preferences. 

 

Problem 9 above shows that the assumption that the utility function is linearly homogeneous (the 

homothetic preferences assumption) is not a good assumption from the empirical point of view.  

Hence we need to generalize our functional forms in order to accommodate nonhomothetic 

preferences. 

 

Let C*(u,p) be an arbitrary twice continuously differentiable cost function that satisfies money 

metric scaling at the positive reference price vector p* >> 0N; i.e., C* satisfies: 

 

(110) C*(u,p*) = u for all u > 0. 

 

Let c(p) be a flexible unit cost function.  Then Diewert (1980; 597) showed that the following 

functional form could approximate C* to the second order at (u*,p*) where u* > 0: 

 

(111) C(u,p)  a
T
p + uc(p) 

 

where the vector of parameters a can be chosen to satisfy the following restriction: 

 

(112) a
T
p* = 0. 

 

The parameters of the unit cost function also satisfy the following restriction: 

 

(113) c(p*) = 1. 
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In order to derive the system of market demand functions that corresponds to the cost function 

defined by (111), we again set C(u,p) equal to “income” Y and solve for the u = g(Y,p) solution: 

 

(114) u = [Y  a
T
p]/c(p). 

 

The system of Hicksian demand functions that corresponds to the cost function defined by (111) is 

as usual obtained using Shephard’s Lemma: 

 

(115) x(u,p)  pC(u,p) = a + upc(p). 

 

Now replace u in the right hand side of (115) by the right hand side of (114) and we obtain the 

consumer’s system of market demand functions: 

 

(116) x(Y,p) = a + pc(p)[Y  a
T
p]/c(p). 

 

Letting c(p)  i=1
N
j=1

N
 bij pi

1/2
 pj

1/2
 be the generalized Leontief unit cost function, the system of 

market demand functions (116) becomes, after adding stochastic error terms: 

 

(117) xi
t
 = ai + {[j=1

N
 bij (pj

t
/pi

t
)
1/2

][Y
t
  k=1

N
akpk

t
]/[i=1

N
j=1

N
 bij (pi

t
)
1/2

 (pj
t
)
1/2

]} + ei
t
 ;   

                                                                                                                            t = 1,...,T ; i = 1,...,N. 

 

One of the ai needs to be eliminated from the estimating equations (117) using the restriction a
T
p* 

= 0 and one of the bij needs to be eliminated using the restriction c(p*) = 1 in order to obtain the 

final system of estimating equations.  However, if period t “income” Y
t
 is equal to period t 

expenditure on the commodities, p
tT

x
t
, then as before, we can only use N1 of the N equations in 

(117) as estimating equations. 

 

Letting c(p)  b
T
p + (1/2)(

T
p)

1
p

T
Bp be the normalized quadratic unit cost function (with b

T
p* = 1 

and Bp* = 0N), the system of market demand functions (116) becomes, after adding stochastic error 

terms: 

 

(118) x
t
 = a + {[b + Bv

t
  (1/2)v

tT
Bv

t
][(

T
p

t
)
1

][Y
t 
 a

T
p

t
]/[b

T
v

t
 + (1/2)v

tT
Bv

t
]} + e

t
 ;       t = 1,...,T 

 

where v
t
  p

t
/

T
p

t
 for t = 1,...,T.  Obviously, nonlinear regression techniques have to be used in 

order to estimate the unknown parameters in the system of estimating equations (118).  One of the 

ai needs to be eliminated from the estimating equations (118) using the restriction a
T
p* = 0 and one 

of the bi needs to be eliminated using the restriction b
T
p* = 1 in order to obtain the final system of 

estimating equations.  However, if period t “income” Y
t
 is equal to period t expenditure on the 

commodities, p
tT

x
t
, then as before, we can only use N1 of the N equations in (118) as estimating 

equations.  If the estimated B matrix turns out to be not negative semidefinite, then we need to 

replace B by  AA
T
 where A is a lower triangular matrix satisfying Ap* = 0N.   

 

11.  The Use of Linear Spline Functions to Achieve Greater Flexibility. 

 

Although the above model is flexible around the point p*, as we move away from p*, the model 

(118) may not fit the data very well.  If the plots of the actual and fitted values using the normalized 
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quadratic model defined by the estimating equations (118) have a zig-zag appearance, then it may 

be worthwhile to try a linear spline model.  We will indicate below how a two segment linear 

spline model can be implemented.  For more details (and an extension to 3 segments instead of 2), 

see Diewert and Wales (1993; 81-85). 

 

We redefine the normalized quadratic cost function C(u,p) as follows: 

 

(119)  C(u, p) = a
T
p + u(1/2)(

T
p)

1
p

T
Bp + d(u, p) 

 

where a satisfies a
T
p* = 0 and  and B satisfy the restrictions (57)-(59).  The function d(u, p) is 

defined as follows: 

 

(120) d(u,p)  ub
T
p                                                              for 0  u  u* 

                     u*b
T
p + (u  u*)f

T
p                                       for u*  u.  

 

where b
T
  [b1,...,bN] and f

T
  [f1,...,fN]  parameter vectors to be estimated and u* is a break point 

level of utility to be chosen by the investigator.  The vectors b and f satisfy the restrictions: 

  

(121) b
T
p* = 1 ; f

T
p* = 1. 

 

How should one pick the break point u*?  We examine the plots of the regression model defined by 

(118) and look for an observation number where the plot changes from a zig to a zag.  Suppose that 

this observation number is t*.  Now compute index numbers of utility using the price and quantity 

data and determine what level of utility corresponds to the chosen observation and set this level 

equal to u*.  This choice of u* will work satisfactorily if the observations which precede the chosen 

observation have estimated indirect utilities which are equal to or less than u* and the remaining 

observations have indirect utilities that are greater than u*.   

 

The estimating equations for the first t* observations will still be given by (118); i.e., for the first t* 

observations, our estimating equations are: 

 

(122) x
t
 = a + {[b + Bv

t
  (1/2)v

tT
Bv

t
][(

T
p

t
)
1

][Y
t 
 a

T
p

t
]/[b

T
v

t
 + (1/2)v

tT
Bv

t
]} + e

t
 ;     t = 1,...,t* 

 

where as usual, v
t
  p

t
/

T
p

t
.  

 

In order to obtain the estimating equations for the last T  t* observations, we need to form the 

Hicksian demand functions and calculate the indirect utility function.  If t > t*, then the Hicksian 

demand functions that correspond to the functional from defined by (119) and (120) are: 

 

(123) x(u,p)  pC(u,p) = a + u[(
T
p)

1
Bp  (1/2)(

T
p)

2
p

T
Bp] + u*b + (u  u*)f 

                                       = a + u*b  u*f + u[f + (
T
p)

1
Bp  (1/2)(

T
p)

2
p

T
Bp]. 

 

For t > t*, the indirect utility function u = g(Y,p) can be obtained by solving C(u,p) = Y.  The 

solution is: 

 

(124) u = [Y  a
T
p  u*b

T
p + u*f

T
p]/[f

T
p + (1/2)(

T
p)

1
p

T
Bp]. 
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Now substitute (124) into (123) in order to obtain the consumer’s market demand functions for 

periods t > t*.  After adding stochastic error terms, we obtain the following estimating equations: 

 

(125) x
t
 = a + u*b  u*f  

          + {[f + Bv
t
  (1/2)v

tT
Bv

t
][(

T
p

t
)
1

][Y
t 
 a

T
p

t
  u*b

T
p

t
 + u*f 

T
p

t
]/[f

T
v

t
 + (1/2)v

tT
Bv

t
]} + e

t
  

                                                                                        for t* < t  T. 

 

Although the estimating equations (125) look rather formidable, they can be programmed with a bit 

of effort.  The most difficult part of implementing the above spline model is choosing the “right” 

observation at which the break point occurs. 

 

As usual, if “income” Y
t
 in period t is equal to expenditure p

tT
x

t
, then we must drop one equation in 

the system of estimating equations (122) and (125).  Finally, if the estimated B matrix is not 

negative semidefinite, then the model should be rerun, setting B =  AA
T
, where A is lower 

triangular and satisfies the restrictions A
T
p* = 0N. 

 

12. The Estimation of Unit Profit Functions:  The General Framework. 
 

Recall problems 1 to 5 above, which introduced the capital requirements function, F(y), which 

gives the minimum amount of capital k that is required to produce the vector of net outputs y.  The 

corresponding variable profit (or operating profit) function V(k,p) can be defined as follows: 

 

(126) V(p,k)  maxy{p
T
y :  k = F(y)} 

 

If commodity i is an output, then yi > 0; if commodity i is an input, yi < 0.  The available capital is 

k > 0.  

 

The function V(p,k) must be linearly homogeneous and convex in p for fixed k.  The economy's 

system of profit maximizing supply and demand functions y(p,k) can be obtained by differentiating 

V(p,k) with respect to  the components of p:  (Hotelling’s (1932) Lemma): 

 

(127)  y(p,k) =  pV(p,k). 

 

The convexity property of V in p implies that: 

 

(128)  py(p,k) = 
2

ppV(p,k) is a positive semidefinite matrix. 

 

If the capital requirements function F(y) is linearly homogeneous (so that the technology exhibits 

constant returns to scale), then V(p,k) has the following property: 

 

(129) V(p,k) = V(p,1)k. 

 

The unit profit function v(p) is the gross return to capital we can achieve using one unit of capital; 

i.e., define v as: 
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(130) v(p)  V(p,1). 

 

With a constant returns to scale technology, we have V(k,p) = kv(p) so that we need only pick a 

functional form for the unit profit function v.  It turns out that we can use the functional forms for 

unit cost functions, c(p), that we defined in sections 2-4 above as functional forms for the unit 

profit function v(p).  The only change that we need to make is that the concavity in p property for 

the unit cost function c(p) must be replaced by a convexity in p property for the unit profit function 

v(p).  We illustrate the use of some of the unit cost functional forms in the sections below. 

 

13. The Translog Variable Profit Function with Constant Returns to Scale. 

 

The translog unit profit function, v(p), is defined as follows: 

 

(131) lnv(p)  0 + i=1
N
 i lnpi + (1/2) i=1

N
 j=1

N
 ij lnpi lnpj  

 

where the parameters i and ij satisfy the following restrictions: 

 

(132) ij = ji ;           1  i < j  N ;                                   (N(N1)/2 symmetry restrictions) 

(133) i=1
N
 i = 1 ;                                                           (1 restriction) 

(134) j=1
N
 ij = 0 ;  i = 1,...,N                                          (N restrictions). 

 

Suppose that in period t, observed capital input is k
t
, the vector of observed output and variable 

input prices is p
t
 >> 0N and the vector of observed net output supplies y

t
 > 0N.  Thus the period t 

observed variable profit or gross return to capital is
25

: 

 

(135)  Vt
  p

tT
y

t
  i=1

N
 pi

t
yi

t
. 

 

The log of (129) can act as an estimating equation: 

 

(136)  lnV
t
 = lnk

t
 + 0 + i=1

N
 i lnpi

t
 + (1/2) i=1

N
 j=1

N
 ij lnpi

t
 lnpj

t
 + e0

t
 ;         t = 1,...,T or 

(137)  ln[V
t
/k

t
] = 0 + i=1

N
 i lnpi

t
 + (1/2) i=1

N
 j=1

N
 ij lnpi

t
 lnpj

t
 + e0

t
 ;             t = 1,...,T. 

 

Note that (137) is linear in the unknown parameters.  As in section 3 above, the old estimating 

equations (42) can be adapted to yield the following estimating equations in the present context: 

 

(138) si
t
  pi

t
yi

t
/V

t
 = i + j=1

N
 ij lnpj

t
 + ei

t
 ;                       i = 1,...,N. 

 

As in section 3, only N  1 of the N estimating equations in (138) are statistically independent. 

 

Unfortunately, the above model is not adequate for empirical applications.  The problem is that the 

economy becomes more efficient over time and more output is produced using the same amount of 

input; i.e., there is technical progress.  Thus we generalize the translog unit profit function defined 

by (131) to include time trends to try and capture the effects of technical progress.  Thus we now 

define the period t unit profit function v(p,t) as follows: 

                                                           
25

 It is important to check that V
t
 > 0 for each observation t. 
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(139) lnv(p,t)  0 +0t + i=1
N
 i lnpi + (1/2) i=1

N
 j=1

N
 ij lnpi lnpj + i=1

N
 i tlnpi 

 

where the parameters i and ij satisfy the restrictions (132)-(134) and the new i parameters satisfy 

the following restriction
26

: 

 

(140) i=1
N
 i = 0. 

  

Using this new definition for v(p,t), defining V(k,p,t)  kv(p,t) and using the general methodology 

explained above, our initial estimating equations (137) and (138) are replaced by the following 

estimating equations: 

 

(141) ln[V
t
/k

t
] = 0 + 0t + i=1

N
 i lnpi

t
 +(1/2)i=1

N
 j=1

N
 ij lnpi

t
 lnpj

t
 + i=1

N
 i tlnpi

t
 + e0

t
; 

(142) si
t
  pi

t
yi

t
/V

t
 = i + j=1

N
 ij lnpj

t
 + it + ei

t
 ;                       i = 1,...,N ; t = 1,...,T. 

 

As in section 3, only N  1 of the N equations in (142) can be used in the estimation. 

 

We have not substituted the restrictions (132)-(134) and (140) into the estimating equations, (141) 

and (142).  We now do this for the case N = 4 in order to show how explicit estimating equations 

can be derived.  We use the restriction (133), i=1
4
 i = 1, in order to eliminate the parameter 4 

and we use the restriction (140), i=1
4
 i = 0, in order to eliminate 4.  Finally, we use the 

restrictions (132) and (134) in order to eliminate the parameters i4 and 4i for i = 1,...,4.  With these 

restrictions imposed, the estimating equation (141) becomes: 

 

(143) ln[V
t
/p4

t
k

t
] = 0 + 0t + i=1

3
 i ln(pi

t
/p4

t
)+ i=1

3
 itln(pi

t
/p4

t
) + (1/2)i=1

3
 ii [ln(pi

t
/p4

t
)]

2
   

                              + i=1
3
 j=1

3
;i<j ij ln(pi

t
/p4

t
)ln(pj

t
/p4

t
)+ e0

t
;                                         t = 1,...,T. 

 

Dropping the last equation in (142) and eliminating the i4 leads to the following system of 

estimating equations when N = 4: 

 

(144) si
t
  pi

t
yi

t
/V

t
 = i + j=1

3
 ij ln(pj

t
/p4

t
) + it + ei

t
 ;                       i = 1,...,3 ; t = 1,...,T. 

 

The unknown parameters in (143) and (144) are 0, 1, 2, 3, 0, 1, 2, 3, 11, 22, 33, 12, 13 and 

23 or 14 parameters in all.  Note that all of the unknown parameters occur in the estimating 

equation (143).  This fact often creates econometric problems.  With a great number of parameters 

in equation (143), the fit will tend to be good but due to multicollinearity, the parameters will not 

be very accurately determined using this equation.  However, two stage estimation procedures (or 

maximum likelihood estimation) will tend to give the first equation undue weight in the system 

estimation procedure (due to the low variance in the first equation) and hence, very inaccurate 

estimates of the parameters can result. 

 

We now return to the case of a model with a general N.  Our old formulae (47) and (49) in section 3 

above for obtaining elasticities of demand can be adapted in a straightforward manner to give us the 
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 This restriction is required in order to ensure that v(p) is linearly homogeneous in the components of p. 
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following formulae for the elasticities of net supply for variable inputs and outputs.  The formulae 

for the cross price elasticities of net supply are given by: 

 

(145) lnyi(k,p)/lnpj = [si(y,p)]
1

 ij + sj(y,p) ;                                                i  j. 

 

The formulae for the own price elasticities of net supply are given by: 

 

(146) lnyi(k,p)/lnpi = [si(y,p)]
1

 ii + si(y,p)  1 ;                                            i = 1,...,N. 

 

Thus given econometric estimates for the i, i and ij, which we denote by i
*
, i

*
 and ij

*
, the 

estimated or fitted shares in period t, si
t*

 are defined using these estimates and equations (142) 

evaluated at the period t data:  

 

(147) si
t*

  i
*
 + i

*
t + j=1

N
 ij

*
 lnpj

t
 ;                                             i = 1,...,N ; t = 1,...,T. 

 

Now use equations (147) and (145) evaluated at the period t data and econometric estimates to 

obtain the following formula for the period t cross elasticities of net supply, eij
t
: 

 

(148) eij
t
  lnyi(k

t
,p

t
)/lnpj = [si

t*
]
1

 ij
*
 + sj

t*
 ;                                   i  j. 

 

Similarly, use equations (146) evaluated at the period t data and econometric estimates to obtain the 

following formula for the period t own elasticities of net supply, eii
t
: 

 

(149) eii
t
  lnyi(k

t
,p

t
)/lnpi = [si

t*
]
1

 ii
*
 + si

t*
  1 ;                                          i = 1,...,N. 

 

We can also obtain an estimated or fitted period t variable profits or gross return to capital, V
t*

, by 

using our econometric estimates for the parameters and by exponentiating the right hand side of the 

equation t in (141): 

 

(150) V
t*

  exp[lnk
t
 + 0

*
 + t0

*
 + i=1

N
 i

*
 lnpi

t
 + i=1

N
 i

*
 tlnpi

t
 + (1/2) i=1

N
 j=1

N
 ij

*
 lnpi

t
 lnpj

t
] ; 

                                                                                                                                           t = 1,...,T. 

 

Finally, our fitted period t shares si
t*

 defined by (147) and our fitted period t profits V
t*

 defined by 

(150) can be used in order to obtain estimated or fitted period t net supplies, yi
t*

, as follows: 

 

(151) yi
t*

  V
t*

si
t*

/pi
t
 ;                                                                i = 1,...,N ; t = 1,...,T. 

 

Given the matrix of period t estimated price elasticities of net supply, [eij
t
], we can readily calculate 

the matrix of period t estimated net output price derivatives, py(k
t
,p

t
) = 

2
ppV(k

t
,p

t
).  Our estimate 

for element ij of 
2

ppV(k
t
,p

t
) is: 

 

(152) Vij
t*

  eij
t
 yi

t*
/pj

t
 ;                                                                               i,j = 1,...,N ; t = 1,...,T 

 

where the estimated period t elasticities eij
t
 are defined by (148) and (149) and the fitted period t net 

output supplies yi
t*

 are defined by (151).  Once the estimated price derivative matrices [Vij
t*

] have 
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been calculated, then we may check whether each of them is positive semidefinite using 

determinantal conditions or by checking if all of the eigenvalues of each matrix are zero or positive. 

 

There remains the problem of measuring the effects of technical progress.  Using (139) in order to 

define V(k,p,t)  kv(p,t), then differentiating V(k,p,t) with respect to time t and evaluating the 

resulting expression at the period t data yields: 

 

(153) lnV(k,p,t)/t = 0
*
 + i=1

N
 i

*
 lnpi

t
  T

t
 ;                                              t = 1,...,T.  

 

The right hand side of (153), T
t
, is our desired measure of technical progress going from period t1 

to period t: it gives us an estimate of the percentage increase in variable profits due to the 

improvements in technology going from period t1 to period t.
27

  

 

In the following section, we generalize the translog model to allow for nonconstant returns to scale. 

 

14. The Translog Variable Profit Function with Nonconstant Returns to Scale. 

 

The period t translog variable profit function is now defined as follows: 

 

(154) ln V(k,p,t)  0 +0t + i=1
N
 i lnpi + i=1

N
 it lnpi + (1/2) i=1

N
 j=1

N
 ij lnpi lnpj  

                              + 0 lnk + i=1
N
 i lnk lnpi + (1/2)  [lnk]

2
 

 

where the parameters i and ij satisfy the restrictions (132)-(134), the i parameters satisfy (140)  

and the new i parameters satisfy: 

 

(155) i=1
N
 i = 0. 

 

The above restrictions ensure that the functional form is homogeneous of degree on in the prices p.  

Comparing our new more general translog with the constant returns to scale function defined in the 

previous section, we see that we have added N new independent i parameters and one new  

parameter.
28

 

 

Obviously, we can use (154) as an estimating equation. Defining V
t
  p

tT
y

t
 as in the previous 

section and evaluating (154) at the period t data, we obtain the following estimating equation: 

 

(156) ln V
t
  0 +0t + i=1

N
 i lnpi

t
 + i=1

N
 i tlnpi

t
 + (1/2) i=1

N
 j=1

N
 ij lnpi

t
 lnpj

t
  

                              + 0 lnk
t
 + i=1

N
 i lnk

t
 lnpi

t
 + (1/2)  [lnk

t
]
2
 ;                                  t = 1,...,T. 
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 Since payments to capital are typically only about one third the size of payments to labour, it will turn out that 

“reasonable” estimates of technical progress T
t
 will be about 3 times the size of our index number estimates of total 

factor productivity growth.  The total factor productivity growth rate is the rate of growth of outputs divided by the rate 

of growth of inputs, where the inputs are taken to be labour and capital services.  Hence the denominator in this 

estimator of technical progress is approximately three times as big as the implicit denominator in T
t
 which is just 

capital input. 
28

 Thus if N = 4, we will have 19 independent parameters in all. 
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We need to eliminate the redundant parameters in (156) as was done in the previous section for the 

case N = 4.  This leads to the following estimating equations: for t = 1,...,T: 

 

(157) ln (V
t
/pN

t
)  0 +0t + i=1

N1
 i ln(pi

t
/pN

t
) + i=1

N1
 it ln(pi

t
/pN

t
) + 

           (1/2) i=1
N1

j=1
N1

ij ln(pi
t
/pN

t
)ln(pj

t
/pN

t
) + 0 lnk

t
 + i=1

N1
 i lnk

t
 ln(pi

t
/pN

t
) + (1/2)  [lnk

t
]
2
.   

 

Differentiating V(k,p,t) with respect to the components of the price vector p and using Hotelling’s 

Lemma leads to the following share equation counterparts to equations (142) in the previous 

section: 

 

(158) si
t
  pi

t
yi

t
/V

t
 = i + it + j=1

N1
 ij ln(pj

t
/pN

t
) + i lnk

t
 + ei

t
 ;                i = 1,...,N1 ; t = 1,...,T. 

 

Note that we have only N1 independent estimating equations in (158). 

 

It turns out that the formulae (145) and (146) in the previous section are still valid formulae for the 

cross price elasticities of net supply.  Hence given econometric estimates for the i, i, i,  and the  

ij, which we denote by i
*
, i

*
, i

*
, 

*
  and ij

*
, the estimated or fitted shares in period t, si

t*
 are 

defined using these estimates and equations (158) evaluated at the period t data:  

 

(159) si
t*

  i
*
 + i

*
t + j=1

N
 ij

*
 lnpj

t
 + i lnk

t
;                                             i = 1,...,N ; t = 1,...,T. 

 

Now use equations (159) and (145) evaluated at the period t data and econometric estimates to 

obtain the following formula for the period t cross elasticities of net supply, eij
t
: 

 

(160) eij
t
  lnyi(k

t
,p

t
)/lnpj = [si

t*
]
1

 ij
*
 + sj

t*
 ;                                   i  j. 

 

Similarly, use equations (146) evaluated at the period t data and econometric estimates to obtain the 

following formula for the period t own elasticities of net supply, eii
t
: 

 

(161) eii
t
  lnyi(k

t
,p

t
)/lnpi = [si

t*
]
1

 ii
*
 + si

t*
  1 ;                                          i = 1,...,N. 

 

We can also obtain an estimated or fitted period t variable profits or gross return to capital, V
t*

, by 

using our econometric estimates for the parameters and by exponentiating the right hand side of the 

equation t in (157): 

 

(162) V
t*

  exp[lnk
t
 + 0

*
 + t0

*
 + i=1

N
 i

*
 lnpi

t
 + i=1

N
 i

*
 tlnpi

t
 + (1/2) i=1

N
 j=1

N
 ij

*
 lnpi

t
 lnpj

t
 

                     + 0 lnk
t
 + i=1

N
 i lnk

t
 lnpi

t
 + (1/2)  [lnk

t
]
2
]                                                 t = 1,...,T. 

  

Our fitted period t shares si
t*

 defined by (159) and our fitted period t profits V
t*

 defined by (162) 

can be used in order to obtain estimated or fitted period t net supplies, yi
t*

, as follows: 

 

(163) yi
t*

  V
t*

si
t*

/pi
t
 ;                                                                i = 1,...,N ; t = 1,...,T. 

 

Given the matrix of period t estimated price elasticities of net supply, [eij
t
], we can readily calculate 

the matrix of period t estimated net output price derivatives, py(k
t
,p

t
) = 

2
ppV(k

t
,p

t
).  Our estimate 

for element ij of 
2

ppV(k
t
,p

t
) is: 
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(164) Vij
t*

  eij
t
 yi

t*
/pj

t
 ;                                                                               i,j = 1,...,N ; t = 1,...,T 

 

where the estimated period t elasticities eij
t
 are defined by (148) and (149) and the fitted period t net 

output supplies yi
t*

 are defined by (163).  Once the estimated price derivative matrices [Vij
t*

] have 

been calculated, then we may check whether each of them is positive semidefinite using 

determinantal conditions or by checking if all of the eigenvalues of each matrix are zero or positive. 

 

Differentiating V(k,p,t) with respect to time t and evaluating the resulting expression at the period t 

data yields: 

 

(165) lnV(k,p,t)/t = 0
*
 + i=1

N
 i

*
 lnpi

t
  T

t
 ;                                              t = 1,...,T. 

 

i.e., we obtain the same measure of technical progress that we obtained in the previous section. 

 

There remains the problem of defining a measure of returns to scale.  The measure we will use is 

one that calculates the percentage change in variable profits due to a one percent change in the use 

of capital.  Thus our measure of returns to scale in period t is: 

 

(166) R
t
  lnV(k,p,t)/lnk = 0 + i=1

N
 i lnpi

t
 +  lnk

t
 ;                       t = 1,...,T. 

 

Note that if we set 0 = 1,  = 0 and i = 0 for i = 1,...,N, then the model in this section collapses 

down to the model presented in the previous section.  Under these restrictions, it can be seen that R
t
 

= 1; i.e., we have constant returns to scale. 

 

When the above translog model is implemented, usually two things happen: 

 

 The curvature conditions fail at one or more observations; i.e., the estimated period t 

substitution matrix [Vij
t*

] defined by (164) above fails to be positive semidefinite at one or more 

periods t and  

 The estimates for the returns to scale R
t
 and for technical progress T

t
 are not reasonable. 

 

The reason why we cannot usually determine accurate estimates for returns to scale and for 

technical progress is that usually k grows fairly smoothly through the sample period and hence the 

variables k and t tend to be highly multicollinear and so our estimates for R
t
 and T

t
 are not very 

well determined. 

 

Thus in subsequent sections, we will impose constant returns to scale.  We will also turn to the 

normalized quadratic functional form where the correct curvature conditions can be imposed 

without destroying the flexibility of the functional form. 

 

15. The Normalized Quadratic Unit Profit Function Model. 
 

We adapt the normalized quadratic unit cost function defined by (56) in section 4 above into a unit 

profit function.  Thus define the production unit’s period t variable profit function V(k,p,t) as 

follows: 
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(167) V(k,p,t)  b
T
pk + (1/2)[p

T
Bp/

T
p]k + c

T
ptk 

 

where b
T
  [b1,...,bN] and c

T
  [c1,...,cN] are parameter vectors and B  [bij] is a matrix of 

parameters.  The matrix B satisfies the following restrictions: 

 

(168) B = B
T
 ; i.e., the matrix B is symmetric; 

(169) Bp* = 0N for some p* >> 0N. 

 

The vector of parameters 
T
  [1,...,N] is predetermined and satisfies  > 0N.  We can adapt the 

analysis presented in section 4 and show that a necessary and sufficient condition for V(k,p,t) 

defined by (167) above to be convex in prices is that the matrix B be positive semidefinite. 

 

Differentiating the normalized quadratic variable profit function defined by (167) with respect to 

the components of the price vector p leads to the following system of net supply functions using 

Hotelling’s Lemma: 

 

(170) y(k,p,t) = pV(k,p,t) = bk + [(
T
p)

1
Bp  (1/2)(

T
p)

2
p

T
Bp]k + ckt. 

 

Evaluating (170) at the period t data, dividing both sides by k
t
 and adding a vector of errors e

t
 leads 

to the following system of estimating equations: 

 

(171) y
t
/k

t
 = b + Bv

t
  (1/2)v

tT
Bv

t
 + ct + e

t
 ;                                               t = 1,...,T 

 

where the vector of period t normalized prices is defined as v
t
  (

T
p

t
)
1

p
t
.   

 

We have not substituted the restrictions (169) into the estimating equations (171).  We shall do this 

substitution below assuming that N = 4 and p* = 14. 

 

We use the restrictions (169) to solve for the bii in terms of the off diagonal bij.  Thus we have, 

assuming that there are 4 variable commodities and p* = 14 and using B = B
T
: 

 

(172) b11 = – b12 – b13 – b14 ; 

 

(174) b22 = – b12 – b23 – b24 ; 

 

(175) b33 = – b13 – b23 – b34 ; 

 

(176) b44 = – b14 – b24 – b34. 

  

Using (172)-(176), we can write Bv as follows: 

 

(177) [Bv]
T
 = [j=1

4
b1jvj,  j=1

4
b2jvj , j=1

4
b3jvj, j=1

4
b4jvj]  

= [b12w12b13w13b14w14, b12w12b23w23b24w24, b13w13+b23w23b34w34, b14w14+b24w24+b34w34]   

 

where 
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(178) wij  vi  vj ;                                                                  i, j = 1, 2, 3, 4. 

 

Premultiplying Bv by v
T
 and using (177) and (178) yields the following formula: 

 

(179) v
T
Bv =  [b12(w12)

2 
+ b13(w13)

2 
+ b14(w14)

2 
+ b23(w23)

2 
+ b24(w24)

2 
+ b34(w34)

2
]. 

 

Now substitute (177) and (179) into (171) and we obtain the following system of estimating 

equations
29

 in the case where N = 4 and p* = 1N: 

 

(180) y1
t
/k

t
 = b1 + c1t  b12w12

t 
 b13w13

t 
 b14w14

t 
 (1/2) v

tT
Bv

t
1 + e1

t
 ;                  t = 1,...,T 

(181) y2
t
/k

t
 = b2 + c2t + b12w12

t
  b23w23

t
  b24w24

t
  (1/2) v

tT
Bv

t
2 + e2

t
 ;                  t = 1,...,T 

(182) y3
t
/k

t
 = b3 + c3t + b13w13

t
 + b23w23

t
  b34w34

t
  (1/2) v

tT
Bv

t
3 + e3

t
 ;                  t = 1,...,T 

(183) y4
t
/k

t
 = b4 + c4t + b14w14

t
 + b24w24

t
 + b34w34

t
  (1/2) v

tT
Bv

t
4 + e4

t
 ;                  t = 1,...,T. 

 

We need to also replace v
tT

Bv
t
 in equations (180)-(181) by the right hand side of (179) evaluated at 

the period t data.  The resulting estimating equations turn out to be linear in the unknown bi, ci and 

bij parameters (4 plus 4 plus 6 equals 14 parameters in all). 

 

Returning to the case of a general number of variable commodities N, we need to calculate the 

matrix of net supply price derivatives.  Differentiating (170) with respect to the components of p 

yields the following matrix of price derivatives at period t: 

 

(184) py(k
t
,p

t
,t) = 

2
pV(k

t
,p

t
,t) = (

T
p

t
)
1 

[B  Bv
t


T
  v

tT
B + v

tT
Bv

t


T
]k

t
 ;   t = 1,...,T 

 

where, as usual, the vector of period t normalized prices is defined as v
t
  (

T
p

t
)
1

p
t
.  Once 

estimates for b, c and B have been obtained (call these estimates b
*
, c

*
 and B

*
 respectively), we can 

use equations (171) in order to obtain period t vectors of fitted net supply vectors y
t*

: 

 

(185) y
t*

  k
t
[b

*
 + B

*
v

t
  (1/2)v

tT
B

*
v

t
 + c

*
t] ;                                                        t = 1,...,T. 

 

 Equations (184) and (185) may be used to form estimated period t price elasticity matrices: 

 

(186) [eij
t
]  [lnyi(k

t
,p

t
,t)/lnpj] = [(pj

t
/yi

t*
)yi(k

t
,p

t
,t)/pj] ;                                    t = 1,...,T 

 

where the derivative estimates yi(k
t
,p

t
,t)/pj can be obtained from (184). 

 

An estimator of variable profits in period t, V
t*

, can be obtained as the inner product of  the period t 

fitted net supply vector y
t*

 defined by (185) and the period t vector of variable commodity prices, 

p
t
: 

 

(187) V
t*

  p
tT

y
t*

 ;                                                                                                    t = 1,...,T. 

                                                           
29

 An alternative system of estimating equations multiplies both sides of (180)-(183) by k
t
.  This alternative system of 

estimating equations often performs “better” in the sense that it leads to more reasonable estimates of net supply 

elasticities.  However, in theory, the original system of estimating equations (180)-(183) should have more 

homoskedastic variances. 



 34 

 

Finally, a measure of period t technical progress T
t
 can be defined as follows: 

 

(188) T
t
  lnV(k

t
,p

t
,t)/t = p

tT
c

*
k

t
/V

t*
 ;                                                                  t = 1,...,T. 

 

Unfortunately, the estimated B
*
 matrix may fail to be positive semidefinite.  Hence, in the 

following section, we adapt the technique used in section 4 above to impose the correct curvature 

conditions on the B matrix. 

 

16. The Normalized Quadratic Unit Profit Function Model with Curvature Imposed. 
 

If the estimated B matrix turns out to be not positive definite, then we can rerun the model in the 

previous section by replacing B by: 

 

(189) B = AA
T
 

 

where A is a lower triangular matrix which satisfies: 

 

(190) A
T
p* = 0N. 

 

For the case N = 4 and for p* = 14, we can use the restrictions (190) and the lower triangular 

structure of A in order to eliminate the aii as follows: 

 

(191) a11 = – a21 – a31 – a41 ; 

(192) a22 = – a32 – a42 ; 

(193) a33 = – a43 ; 

(194) a44 = 0. 

 

If we substitute (191)-(194) into (189), we obtain the following formulae for the bij in terms of the 

aij: 

 

(195) b11 = a11
2
                              = [a21 + a31 + a41]

2
  

(196) b12 = a11 a21                          = – [a21 + a31 + a41]a21 

(197) b13 = a11a31                                   = – [a21 + a31 + a41]a31 

(198) b14 = a11a41                           = – [a21 + a31 + a41]a41 

(199) b22 = a21
2
 + a22

2
                    = a21

2
 + [a32 + a42]

2
 

(200) b23 = a21a31 + a22a32              = a21a31 – [a32 + a42]a32 

(201) b24 = a21a41 + a22a42              = a21a41 – [a32 + a42]a42 

(202) b33 = a31
2
 + a32

2
 + a33

2
          = a31

2
 + a32

2
 + a43

2
 

(203) b34 = a31a41 + a32a42 + a33a43 = a31a41 + a32a42 + a43
2
 

(204) b44 = a41
2
 + a42

2
 + a43

2
          = a41

2
 + a42

2
 + a43

2
. 

 

Now we need only replace the bij parameters which occurred in the model of the previous section 

by the formulae on the right hand sides of (195)-(204) and run the previous model as a nonlinear 

regression.  The parameters of the new model are the elements of the vectors b and c (as before) 

and the elements of the A matrix. 
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Once the aij have been estimated, the bij parameters can be computed using (189) (or (195)-(204) if 

N = 4 and p* = 14) and the elasticity formulae (186) and the estimates of technical progress (188) in 

the previous section can be computed. 

 

It turns out that we can use spline techniques in the production context as well as in the consumer 

context.  In the following section, we indicate how technical progress can be modeled using spline 

techniques. 

 

17. The Normalized Quadratic Unit Profit Function Model and the Use of Splines for 

Modeling Technical Progress. 

 

We adapt the normalized quadratic profit function defined by (167) in section 15 above into a 

spline model.  We illustrate the technique by developing the algebra for a model with two break 

points.  Thus define the production unit’s period t variable profit function V(k,p,t) as follows: 

 

(205) V(k,p,t)  b
T
pk + (1/2)[p

T
Bp/

T
p]k + d(k,p,t) 

 

where b
T
  [b1,...,bN] is a parameter vectors and B  [bij] is a matrix of parameters.  The matrix B 

satisfies the restrictions (168) and (169) and is positive semidefinite.  As usual, the vector of 

parameters 
T
  [1,...,N] is predetermined and satisfies  > 0N.  The linear spline function d(k,p,t) 

is defined as follows: 

 

(206) d(k,p,t)  kc
T
pt                                                                for 1  t  t* 

                        kc
T
pt* + (t  t*)kf

T
p                                       for t* < t  t** 

                        kc
T
pt* + (t**  t*)kf

T
p + (t  t**)kg

T
p          for t** < t  T 

          

where c
T
  [c1,...,cN], f

T
  [f1,...,fN] and g

T
  [g1,...,gN]   are parameter vectors to be estimated.  The 

periods t* and t** are break points where the rate of technological change shifts from one regime to 

another.  These break points are to be chosen by the investigator.   

 

Differentiating the normalized quadratic variable profit function defined by (205) with respect to 

the components of the price vector p leads to the following system of net supply functions using 

Hotelling’s Lemma: 

 

(207) y(k,p,t) = pV(k,p,t) = bk + [(
T
p)

1
Bp  (1/2)(

T
p)

2
p

T
Bp]k + pd(k,p,t). 

 

Evaluating (207) at the period t data, dividing both sides by k
t
 and adding a vector of errors e

t
 leads 

to the following system of estimating equations: 

 

(208) y
t
/k

t
 = b + Bv

t
  (1/2)v

tT
Bv

t
 + ct + e

t
 ;                                                    t = 1,...,t* ; 

(209) y
t
/k

t
 = b + Bv

t
  (1/2)v

tT
Bv

t
 + ct* + (t  t*)f  + e

t
 ;                                t = t*+1,...,t** ; 

(210) y
t
/k

t
 = b + Bv

t
  (1/2)v

tT
Bv

t
 + ct* + (t**  t*)f  + (t  t**)g + e

t
 ;         t = t**+1,...,T. 
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where, as usual, the vector of period t normalized prices is defined as v
t
  (

T
p

t
)
1

p
t
.  It can be seen 

that the model defined by the estimating equations (208)-(210) is linear in the unknown parameters 

(but their are cross equation equality constraints on the parameters in the B matrix). 

 

It turns out that equations (184) are still valid in order to calculate the period t matrix of price 

derivatives of net supply; i.e., we have the following matrix of price derivatives at period t: 

 

(211) py(k
t
,p

t
,t) = 

2
pV(k

t
,p

t
,t) = (

T
p

t
)
1 

[B  Bv
t


T
  v

tT
B + v

tT
Bv

t


T
]k

t
 ;   t = 1,...,T. 

 

Obviously equations (208)-(211) can be used to generate fitted net supply vectors y
t*

 and then 

equations (211) and (186) may be used to form estimated period t price elasticity matrices. 

 

How should one pick the break points t* and t**?  We examine the plots of the regression model 

defined by (208)-(210) and look for an observation numbers where the plot changes from a zig to a 

zag.  Suppose that for most of the equations, these change of directions occur at periods t* and t**.  

This will determine the break points.  Additional break points can be added if necessary. 

 

The period t measures of technical progress T
t
 are defined as follows: 

 

(212) T
t
  lnV(k

t
,p

t
,t)/t = p

tT
c

*
k

t
/V

t*
 ;                                                                t = 1,...,t*; 

(213) T
t
  lnV(k

t
,p

t
,t)/t = p

tT
f
*
k

t
/V

t*
 ;                                                                 t = t*+1,...,t**; 

(214) T
t
  lnV(k

t
,p

t
,t)/t = p

tT
g

*
k

t
/V

t*
 ;                                                                t = t**+1,...,T. 

 

Our estimates of the rate of technological change will change discontinuously as we cross the break 

points, which is perhaps a disadvantage of this spline model. 

 

Of course, if the estimated B matrix turns out to be not positive semidefinite, then we may replace 

B by AA
T
 as in the previous section. 

 

18. Allowing for Flexibility at Two Sample Points 
 

If we differentiate the normalized quadratic profit function defined by (167) above with respect to 

the mth component of the price vector p, we obtain the following equation that describes the net 

supply of commodity m as a function of the price vector p in period t: 

 

(215) ym(k,p,t) = bm k + cm tk + j=1
N
 bmj  (pj/

T
p)k  (1/2) m p

T
Bp/(

T
p)

2
 k.    

Now differentiate (215) with respect to pn, the nth component of the price vector p: 

 

(216) ym(k,p,t)/pn = bmn k/
T
p  j=1

N
 bmj n pj k/(

T
p)

2
  j=1

N
 bnj m pj k/(

T
p)

2
  

                                  + (1/2) mn p
T
Bp k/(

T
p)

3
.. 

 

Now turn (216) into the cross elasticity of net supply of commodity m with respect to a change in 

the price of commodity n, emn: 
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(217) emn(p,t)  [pn/ym] ym(k,p,t)/pn 

                      = bmn (pn/
T
p)(k/ym)  [pn /ym] j=1

N
 bmj n pj k/(

T
p)

2
  

                           [pn/ym]j=1
N
 bnj m pj k/(

T
p)

2
 + [pn/ym](1/2) mn p

T
Bp k/(

T
p)

3
 . 

   

Using the restrictions (169), the last three terms on the right hand side of (217) will be zero when p 

= p* and thus, empirically, these last three terms will typically be small in magnitude.  Thus, the 

key determinant of the magnitude of the elasticity emn will typically be the first term on the right 

hand side of (217), namely, bmn (pn/
T
p)(k/ym).  Of course, the parameter bmn will be constant over 

time but the other terms, pn (the price of commodity n), ym (the net output of commodity m), k (the 

amount of the “fixed” factor) and 
T
p (a fixed basket price index of all N variable input and output 

prices) can all have substantial trends over our sample period.  Thus, our chosen functional form 

has built in these possible trends in elasticities.  

 

A solution to this problem is readily at hand but at a cost in terms of using up degrees of freedom.  

We have followed the example of most applied production function researchers and allowed 

technical progress to affect the constant terms in the system of net supply functions (215) but we 

have left the substitution matrix B unchanged over time.  To solve the problem of trending 

elasticities, all we have to do is allow B to change over time as well.  Thus, simply set the matrix B 

in (167) and (215) equal to a weighted average of a matrix C (which characterizes substitution 

possibilities at the beginning of the sample period) and a matrix D (which characterizes substitution 

possibilities at the end of the sample period); i.e., define B as follows in terms of C and D and the 

time variable t: 

 

(218) B
t
 = (1  [t/T])C + [t/T]D ;                                    t = 0,1,2,…,T. 

Note that there are T+1 sample observations.  Essentially, we now let technical progress affect not 

only the constant terms in (167) but we also allow it to affect substitution possibilities as well.  

Another way of viewing our new functional form is that we allow the functional form to be flexible 

at two points (the first sample point and the last) instead of the usual one point. 

 

As usual, the correct curvature conditions can be imposed globally (globally) by setting C and D 

equal to the product of UU
T
 and VV

T
 respectively, where U and V are lower triangular matrices; 

i.e., set: 

 

(219) C = UU
T
 and D = VV

T
;                                         U and V lower triangular. 

We can also impose the following normalizations on the matrices U and V: 

(220) U
T
p* = 0N ; V

T
p* = 0N . 

 

This technique of imposing price flexibility at two points is due to Diewert and Lawrence (2002). 

 

19. Semiflexible Functional Forms 
 

Recall the basic normalized quadratic functional form for a unit profit function that was defined in 

section 16 above and recall that most of the unknown parameters for this functional form are in the 
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B equals AA
T
 matrix where A is an N by N lower triangular matrix which satisfies the restrictions 

(190), A
T
p* = 0N. 

 

In models where the number of commodities N is large, it can be difficult to estimate all of the 

parameters of the A matrix at one time.  An effective way to estimate the A matrix is to estimate it 

one column at a time.  Thus in the first stage, we use the estimating equations (180)-(183) or (215) 

with the A (and hence B) matrix set equal to zero.  Then at the next stage we use the estimates for 

the parameters which are not in the B matrix as starting values for the stage 2 nonlinear regression 

model with B set equal to AA
T
 where A is a rank 1 lower triangular matrix; i.e., at this second 

stage, A is set equal to:
30

  

 

(221) A  



















0...0

............

0...0

0...0

1

21

11

Na

a

a

 . 

 

The estimated parameters from this stage 2 nonlinear regression are then used as starting values in a 

stage 3 nonlinear regression that fills in column 2 of the lower triangular matrix A; i.e., in the stage 

3 regression, A is set equal to the following rank 2 lower triangular matrix:
31

 

 

(222) A  



















0...

............

0...

0...0

21

2221

11

NN aa

aa

a

 . 

 

This procedure of gradually adding nonzero columns to the A matrix can be continued until the full 

number of N1 nonzero columns have been added, provided that the number of time series 

observations T is large enough compared to N, the number of commodities in the model.  However, 

in models where T is small relative to N, the above procedure of adding nonzero columns to A will 

have to be stopped well before the maximum number of N1 nonzero columns has been added, due 

to the lack of degrees of freedom.  Suppose that we stop the above procedure after K < N1 

nonzero columns have been added.  Then Diewert and Wales (1988b; 330) call the resulting 

normalized quadratic functional form a flexible of degree K functional form or a semiflexible 

functional form.  A flexible of degree K functional form for a profit or cost function can 

approximate an arbitrary twice continuously differentiable functional form to the second order at 

                                                           
30

 We also need to use the restrictions (190) to express a11 in terms of a21, … , aN1.  Thus if p
*
 is a vector of ones, the a11 

in (221) is replaced by a21 a31 … aN1.  If maximum likelihood estimation is used, then in the stage 2 nonlinear 

regression, the starting values for a21, … , aN1 are taken to be 0’s so the starting log likelihood for the stage 2 nonlinear 

regression will be equal to the final log likelihood of the stage 1 regression.  This provides a check on the programming 

code used.  A similar strategy should be used with the subsequent stage 3, 4 and so on regressions. 
31

 The starting values for the stage 3 nonlinear regression for the elements in the first column of A are the final 

estimated values from the stage 2 nonlinear regression and the starting values for the elements in the second column of 

A are 0’s.  Again, if p
*
 is a vector of ones, the a22 in (222) is replaced by a32 a42 … aN2.   
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some point, except the matrix of second order partial derivatives of the functional form with respect 

to prices is restricted to have maximum rank K instead of the maximum possible rank, N1.     

 

What is the cost of estimating a semiflexible functional form for a profit function instead of a fully 

flexible functional form?  When we estimate a fully flexible functional form, we need the B matrix 

to be able to approximate an arbitrary positive semidefinite symmetric matrix B
*
 of rank N1.  This 

arbitrary B
*
 can be represented as a sum of N1 rank one positive semidefinite matrices as we now 

show. 

 

Recall that any symmetric matrix can be diagonalized by means of an orthonormal transformation; 

i.e., there exists a matrix U equal to [u
1
,u

2
,…,u

N
], where the u

n
 are the columns of U, such that: 

 

(223) U
T
BU

 
=   



















N





...00

............

0...0

0...0

2

1

    

 

where U satisfies 

 

(224) U
T
U = IN  

 

and  is a diagonal matrix with the nonnegative eigenvalues of B, the n, running down the main 

diagonal.  We order these eigenvalues starting with the biggest and ending up with the smallest 

(which is equal to 0): 

 

(225) 1  2  …  N1  N = 0. 

 

Now premultiply both sides of (223) by U and post multiply both sides of (223) by U
T
.  Using 

(224), we find that: 

 

(226) B = UU
T
 

             = [u
1
1, u

2
2,  … , u

N
N] [u

1
, u

2
, … , u

N
]

T
 

             = n=1
N
 n u

n
 u

nT
 

             = n=1
N1

 n u
n
 u

nT
  

 

where the last equality in (226) follows from the fact that N = 0. 

 

If we estimate a normalized quadratic that is flexible of degree K, then it turns out that the resulting 

AA
T
 matrix can approximate B defined by (226) as follows: 

 

(227) AA
T
 = n=1

K
 n u

n
 u

nT
 . 

 

Thus the cost of using a semiflexible functional form of degree K where K is less than N1 is that 

we will miss out on the part of B that corresponds to the smallest eigenvalues of B; i.e., our 
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estimating AA
T
 will be too small by the positive semidefinite matrix n=K

N1
 n u

n
 u

nT
.  In many 

situations, this cost will be very small; i.e., as we go through the various stages of estimating A by 

adding an extra nonzero column to A at each stage, we can monitor the increase in the final log 

likelihood (if we use maximum likelihood estimation) and when the increase in stage k+1 over 

stage k is “small”, we can stop adding extra columns, secure in the knowledge that we are not 

underestimating the size of B by a large amount. 

 

This semiflexible technique has not been widely applied but it would seem to offer some big 

advantages in estimating substitution matrices in situations where there are a large number of 

commodities in the model.
32

   

   

References. 
 

Christensen, L.R., D.W. Jorgenson and L.J. Lau (1971), “Conjugate Duality and the Transcendental 

Logarithmic Production Function,” Econometrica 39, 255-256. 

 

Christensen, L.R., D.W. Jorgenson and L.J. Lau (1975), “Transcendental Logarithmic Utility 

Functions”, American Economic Review 65, 367-383. 

 

Diewert, W.E. (1971),  “An Application of the Shephard Duality Theorem: A Generalized Leontief 

Production Function”, Journal of Political Economy 79, 481-507. 

 

Diewert, W.E. (1974a), “Applications of Duality Theory,” pp. 106-171 in M.D. Intriligator and 

D.A. Kendrick (ed.), Frontiers of Quantitative Economics, Vol. II, Amsterdam: North-Holland. 

 

Diewert, W.E. (1974b), “Functional Forms for Revenue and Factor Requirements Functions”, 

International Economic Review 15, 119-130. 

 

Diewert, W.E. (1980), “Symmetry Conditions for Market Demand Functions”,  The Review of 

Economic Studies 47, 595-601. 

 

Diewert, W.E. and D. Lawrence (2002), “The Deadweight Costs of Capital Taxation in Australia”, 

pp. 103-167 in Efficiency in the Public Sector, Kevin J. Fox (ed.), Boston: Kluwer Academic 

Publishers.  

 

Diewert, W.E. and T.J. Wales (1987), “Flexible Functional Forms and Global Curvature 

Conditions”,  Econometrica 55, 43-68. 

 

Diewert, W.E. and T.J. Wales (1988a), “Normalized Quadratic Systems of Consumer Demand 

Functions”,  Journal of Business and Economic Statistics 6, 303-12. 

 

Diewert, W.E. and T.J. Wales (1988b), “A Normalized Quadratic Semiflexible Functional Form”,  

Journal of Econometrics 37, 327-42. 

 

                                                           
32

 Diewert and Lawrence in some unpublished work have successfully estimated semiflexible models for profit 

functions for 40 to 45 commodities. 



 41 

Diewert, W.E. and T.J. Wales (1992), “Quadratic Spline Models For Producer’s Supply and 

Demand Functions”, International Economic Review 33, 705-722.  

 

Diewert, W.E. and T.J. Wales (1993), “Linear and Quadratic Spline Models for Consumer Demand 

Functions”, Canadian Journal of Economics 26, 77-106. 

 

Hicks, J.R. (1941-42), “Consumers’ Surplus and Index Numbers”, The Review of Economic Studies 

9, 126-137. 

 

Hicks, J.R. (1946), Value and Capital, Second Edition, Oxford: Clarendon Press. 

 

Hotelling, H. (1932), “Edgeworth’s Taxation Paradox and the Nature of Demand and Supply 

Functions”, Journal of Political Economy 40, 577-616. 

 

Leontief, W.W. (1941), The Structure of the American Economy 1919-1929, Cambridge, 

Massachusetts: Harvard University Press. 

 

Samuelson, P.A. (1974), “Complementarity—An Essay on the 40th Anniversary of the Hicks-Allen 

Revolution in Demand Theory”, Journal of Economic Literature 12, 1255-1289. 

 

Shephard, R.W. (1953), Cost and Production Functions, Princeton:  Princeton University Press. 

 

Walras, L. (1954), Elements of Pure Economics, (a translation by W. Jaffé of  the Edition 

Définitive (1926) of the Eléments d’économie pure, first edition published in 1874), Homewood, 

Illinois: Richard D. Irwin. 

 

Wiley, D.E., W.H. Schmidt and W.J. Bramble (1973), “Studies of a Class of Covariance Structure 

Models”, Journal of the American Statistical Association 68, 317-323. 


