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Chapter 5: Index Number Theory: Part II: The Economic Approach to Index 

Number Theory 

 

1. Introduction 
 

This part of Chapter 5 explains the economic approach to index number theory in more 

detail than was done in Part I of Chapter 5.
1
  

 

In section 2, we outline the theory of the cost of living index that was first developed by 

the Russian economist, Konüs (1939).  The approach in this section is completely 

nonparametric but it sets the stage for later developments. 

 

In section 3, we specialize the general theory developed in section 2 to the case where the 

consumer’s preferences are homothetic; i.e., they can be represented by a linearly 

homogeneous utility function.  At first glance, it may seem that this restriction is not very 

interesting from an empirical point of view since Engel’s Law demonstrates that overall 

consumer preferences are not homothetic. However, there are too many commodities in 

the real world; it is necessary to aggregate similar commodities into subaggregates in 

order to model the economy.  In forming subaggregates, it is very useful to assume the 

existence of a linearly homogeneous subaggregator function so that we obtain a 

subaggregate price index that is independent of quantities. 

 

In section 4, we establish Shephard’s Lemma and Wold’s Identity.  These results will 

prove to be very useful in the subsequent sections. 

 

In sections 5-7, we establish various exact index number formulae in the case where the 

consumer’s preferences are homothetic or where the subaggregator function is linearly 

homogeneous.  These formulae can be evaluated using observable price and quantity data 

pertaining to the two periods under consideration and they are exactly equal to a 

corresponding theoretical index, provided that the consumer’s preferences can be 

represented by certain functional forms.  We restrict our analysis to the case where the 

underlying functional form for the preference function can provide a second order 

approximation to an arbitrary preference function of the type under consideration; i.e., we 

restrict ourselves to flexible functional forms for functions that represent preferences. 

 

In section 8, we consider price indexes or cost of living indexes in the case where 

preferences are general; i.e., we drop the homotheticity assumption in this section and in 

section 9, where we consider quantity indexes in the nonhomothetic case.  The situation 

is much more complicated in the case of nonhomothetic preferences but the results 

presented in sections 8 and 9 are reasonably powerful. 

 

                                                 
1
 There is some duplication with the material that was developed in Part I of Chapter 5. 
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Section 10 offers a short conclusion.     

 

2. Konüs True Cost of Living Indexes 

 

In this section, we will outline the theory of the cost of living index for a single consumer 

(or household) that was first developed by the Russian economist, A. A. Konüs (1939).  

This theory relies on the assumption of optimizing behavior on the part of the consumer.  

Thus given a vector of commodity or input prices p
t
 that the consumer faces in a given 

time period t, it is assumed that the corresponding observed quantity vector q
t
 is the 

solution to a cost minimization problem that involves the consumer’s preference or utility 

function f.   

 

We assume that “the” consumer has well defined preferences over different combinations 

of the N consumer commodities or items.
2
  Each combination of items can be represented 

by a nonnegative vector q  [q1,…,qN].  The consumer’s preferences over alternative 

possible consumption vectors q are assumed to be representable by a nonnegative, 

continuous, increasing, and quasiconcave utility function f, which is defined over the 

nonnegative orthant.  Thus if f(q
1
) > f(q

0
), then the consumer prefers the consumption 

vector q
1
 to q

0
.  We further assume that the consumer minimizes the cost of achieving the 

period t utility level u
t
  f(q

t
) for periods t = 0,1.  Thus we assume that the observed 

period t consumption vector q
t
 solves the following period t cost minimization problem:

3
 

 

(1)  C(u
t
,p

t
)  min q {p

t
q :  f(q) = u

t
} = p

t
q

t
 ;                                                          t = 0,1. 

 

The period t price vector for the n commodities under consideration that the consumer 

faces is p
t
.  Note that the solution to the cost or expenditure minimization problem (1) for 

a general utility level u and general vector of commodity prices p defines the consumer’s 

cost or expenditure function, C(u,p).  It can be shown
4
 that C(u,p) will have the following 

properties: (i) C(u,p) is jointly continuous in u,p for p >> 0N and uU where U is the 

range of f and is a nonnegative function over this domain of definition set; (ii) C(u,p) is 

increasing in u for each fixed p and (iii) C(u,p) is nondecreasing, linearly homogeneous 

and concave function of p for each uU.  Conversely, if a cost function is given and 

satisfies the above properties, then the utility function f that is dual to C can be recovered 

using duality theory.
5
  We shall use the cost function in order to define the consumer’s 

cost of living price index. 

 

The Konüs (1939) family of true cost of living indexes pertaining to two periods where 

the consumer faces the strictly positive price vectors p
0
  (p1

0
,…,pN

0
) and p

1
  

(p1
1
,…,pN

1
)  in periods 0 and 1 respectively is defined as the ratio of the minimum costs 

of achieving the same utility level u  f(q) where q is a positive reference quantity vector: 

                                                 
2
 In this section, these preferences are assumed to be invariant over time.  In section 8 when we introduce 

environmental variables, this assumption will be relaxed. 
3
 Notation: p

t
q  n=1

N
 pn

t
qn. 

4
 See Diewert (1993b; 124). 

5
 See Diewert (1974; 119) (1993b; 129) and Blackorby and Diewert (1979) for the details and for 

references to various duality theorems. 
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(2)  PK(p
0
,p

1
,q)  C[f(q),p

1
]/C[f(q),p

0
].  

 

We say that definition (2) defines a family of price indexes because there is one such 

index for each reference quantity vector q chosen. 

 

It is natural to choose two specific reference quantity vectors q in definition (2): the 

observed base period quantity vector q
0
 and the current period quantity vector q

1
.  The 

first of these two choices leads to the following Laspeyres-Konüs true cost of living index: 

 

(3) PK(p
0
,p

1
,q

0
)  C[f(q

0
),p

1
]/C[f(q

0
),p

0
] 

            = C[f(q
0
),p

1
]/p

0
q

0
                                                  using (1) for t = 0 

            = min q {p
1
q :  f(q) = f(q

0
)}/p

0
q

0
                         using the definition of C[f(q

0
),p

1
] 

             p
1
q

0
/p

0
q

0
                                                           since q

0
  (q1

0
,…,qN

0
) is feasible  

             PL(p
0
,p

1
,q

0
,q

1
) 

 

where PL is the observable Laspeyres price index.  Thus the (unobservable) Laspeyres-

Konüs true cost of living index is bounded from above by the observable Laspeyres price 

index.
6
 

 

The second of the two natural choices for a reference quantity vector q in definition (2) 

leads to the following Paasche-Konüs true cost of living index: 

 

(4) PK(p
0
,p

1
,q

1
)  C[f(q

1
),p

1
]/C[f(q

1
),p

0
] 

            = p
1
q

1
/C[f(q

1
),p

0
]                                                  using (1) for t = 1 

            = p
1
q

1
/min q {p

0
q :  f(q) = f(q

1
)}                         using the definition of C[f(q

1
),p

0
] 

             p
1
q

1
/p

0
q

1
                                        since q

1
  (q1

1
,…,qN

1
) is feasible and thus 

                                                                        C[f(q
1
),p

0
]  p

0
q

1
 and 1/C[f(q

1
),p

0
]  1/p

0
q

1
     

             PP(p
0
,p

1
,q

0
,q

1
) 

 

where PP is the observable Paasche price index.  Thus the (unobservable) Paasche-Konüs 

true cost of living index is bounded from below by the observable Paasche price index.
7
 

 

The bound (3) on the Laspeyres-Konüs true cost of living PK(p
0
,p

1
,q

0
) using the base 

period level of utility as the living standard is one sided as is the bound (4) on the 

Paasche-Konüs true cost of living PK(p
0
,p

1
,q

1
) using the current period level of utility as 

the living standard.  In a remarkable result, Konüs (1939; 20) showed that there exists an 

intermediate consumption vector q
*
 that is on the straight line joining the base period 

consumption vector q
0
 and the current period consumption vector q

1
 such that the 

corresponding (unobservable) true cost of living index PK(p
0
,p

1
,q

*
) is between the 

observable Laspeyres and Paasche indexes, PL and PP.
8
  Thus we have:

9
 

                                                 
6
 This inequality was first obtained by Konüs (1939; 17).  See also Pollak (1983). 

7
 This inequality is also due to Konüs (1939; 19).  See also Pollak (1983). 

8
 For more recent applications of the Konüs method of proof, see Diewert (1983a;191) (2001; 173) for 

applications in the consumer context and Diewert (1983b; 1059-1061) for an application in the producer 

context.  



 4 

 

Proposition 1:  There exists a number 
*
 between 0 and 1 such that  

 

(5)  PL  PK(p
0
,p

1
,(1

*
)q

0
 + 

*
q

1
)  PP   or   PP  PK(p

0
,p

1
,(1

*
)q

0
 + 

*
q

1
)  PL. 

 

Proof: Define g() for 0    1 by g()  PK(p
0
,p

1
,(1)q

0
 + q

1
).  Note that g(0) = 

PK(p
0
,p

1
,q

0
) and g(1) = PK(p

0
,p

1
,q

1
).  There are 24 = (4)(3)(2)(1) possible a priori 

inequality relations that are possible between the four numbers g(0), g(1), PL and PP.  

However, the inequalities (3) and (4) above imply that g(0)  PL and PP  g(1).  This 

means that there are only six possible inequalities between the four numbers: 

 

(6)  g(0)  PL  PP  g(1) ; 

(7)  g(0)  PP  PL  g(1) ; 

(8)  g(0)  PP  g(1)  PL ; 

(9)  PP  g(0)  PL  g(1) ; 

(10)  PP  g(1)   g(0)  PL; 

(11)  PP  g(0)   g(1)  PL. 

 

Using the assumptions that: (a) the consumer’s utility function f is continuous over its 

domain of definition; (b) the utility function is increasing in the components of q and 

hence is subject to local nonsatiation and (c) the price vectors p
t
 have strictly positive 

components, it is possible to use Debreu’s (1959; 19) Maximum Theorem (see also 

Diewert (1993b; 112-113) for a statement of the Theorem) to show that the consumer’s 

cost function C(f(q),p
t
) will be continuous in the components of q.  Thus using definition 

(2), it can be seen that PK(p
0
,p

1
,q)  will also be continuous in the components of the 

vector q.  Hence g() is a continuous function of  and assumes all intermediate values 

between g(0) and g(1).  By inspecting the inequalities (6)-(11) above, it can be seen that 

we can choose  between 0 and 1, 
*
 say, such that PL  g(

*
 )  PP for case (6) or such 

that PP  g(
*
 )  PL for cases (7) to (11).  Thus at least one of the two inequalities in (5) 

holds.                                                                                                                           Q.E.D. 

 

The above inequalities are of some practical importance.  If the observable (in principle) 

Paasche and Laspeyres indexes are not too far apart, then taking a symmetric average of 

these indexes should provide a good approximation to a true cost of living index where 

the reference standard of living is somewhere between the base and current period living 

standards.  Note that the theory thus far is completely nonparametric; i.e., we do not have 

to make any specific assumptions about the functional form of f or C.  

 

If we require a single estimate for the price change between the two periods under 

consideration, then it is natural to take some sort of evenly weighted average of the two 

bounding indexes which appear in (5) as our final estimate of price change between 

periods 0 and 1.  This averaging of the Paasche and Laspeyres strategy is due to Bowley: 

 

                                                                                                                                                 
9
 For a generalization of this single consumer result to the case of many consumers, see Diewert (2001; 

173). 
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“If [the Paasche index] and [the Laspeyres index] lie close together there is no further difficulty; if they 

differ by much they may be regarded as inferior and superior limits of the index number, which may be 

estimated as their arithmetic mean … as a first approximation.”  A. L. Bowley (1901; 227). 

 

“When estimating the factor necessary for the correction of a change found in money wages to obtain the 

change in real wages, statisticians have not been content to follow Method II only [to calculate a Laspeyres 

price index], but have worked the problem backwards [to calculate a Paasche price index] as well as 

forwards. … They have then taken the arithmetic, geometric or harmonic mean of the two numbers so 

found.”  A. L. Bowley (1919; 348).
10

 

 

Examples of such symmetric averages
11

 are the arithmetic mean, which leads to the 

Sidgwick (1883; 68) Bowley (1901; 227)
12

 index: 

 

(12) PSB(p
0
,p

1
,q

0
,q

1
)  (1/2)PL(p

0
,p

1
,q

0
,q

1
) + (1/2)PP(p

0
,p

1
,q

0
,q

1
) 

 

or the geometric mean, which leads to the Fisher (1922) ideal index:  

 

(13) PF(p
0
,p

1
,q

0
,q

1
)  [PL(p

0
,p

1
,q

0
,q

1
) PP(p

0
,p

1
,q

0
,q

1
)]

1/2
 . 

 

In order to determine which average of the Laspeyres and Paasche indexes might be 

“best”, we need criteria or tests or properties that we would like our indexes to satisfy.  

We will conclude this section by suggesting one possible approach to picking the “best” 

average. 

 

At this point, it is convenient to define exactly what we mean by a symmetric average of 

two numbers.  Thus let a and b be two positive numbers.  Diewert (1993c; 361) defined a 

symmetric mean of a and b as a function m(a,b) that has the following properties: 

 

(14) m(a,a) = a for all a > 0 ;                                                         (mean property); 

(15) m(a,b) = m(b,a) for all a > 0, b > 0 ;                                      (symmetry property); 

(16) m(a,b) is a continuous function for a > 0, b > 0 ;                   (continuity property); 

(17) m(a,b) is a strictly increasing function;                                 (increasingness property). 

 

It can be shown that if m(a,b) satisfies the above properties, then it also satisfies the 

following property:
13

 

 

(18) min {a,b}  m(a,b)  max {a,b} ;                                           (min-max property); 

 

i.e., the mean of a and b, m(a,b), lies between the maximum and minimum of the 

numbers a and b.  Since we have restricted the domain of definition of a and b to be 

positive numbers, it can be seen that an implication of (18) is that m also satisfies the 

following property: 

 

                                                 
10

 Fisher (1911; 417-418) (1922) also considered the arithmetic, geometric and harmonic averages of the 

Paasche and Laspeyres indexes. 
11

 For a discussion of the properties of symmetric averages, see Diewert (1993c). 
12

 See Diewert (1993a; 36) for additional references to the early history of index number theory. 
13

 To prove this, use the technique of proof used by Eichhorn and Voeller (1976; 10). 
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(19)  m(a,b) > 0 for all a > 0, b > 0 ;                                                      (positivity property). 

 

If in addition, m satisfies the following property, then we say that m is a homogeneous 

symmetric mean: 

 

(20) m(a,b)  = m(a,b) for all  > 0, a > 0, b > 0. 

 

What is the “best” symmetric average of PL and PP to use as a point estimate for the 

theoretical cost of living index?  It is very desirable for a price index formula that 

depends on the price and quantity vectors pertaining to the two periods under 

consideration to satisfy the time reversal test
14

.  We say that the index number formula 

P(p
0
,p

1
,q

0
,q

1
)  satisfies this test if 

 

(21) P(p
1
,p

0
,q

1
,q

0
) = 1/ P(p

0
,p

1
,q

0
,q

1
) ; 

 

i.e., if we interchange the period 0 and period 1 price and quantity data and evaluate the 

index, then this new index P(p
1
,p

0
,q

1
,q

0
) is equal to the reciprocal of the original index 

P(p
0
,p

1
,q

0
,q

1
). 

 

Now we are ready to look for a homogeneous symmetric mean of the Laspeyres and 

Paasche price indexes that satisfies the time reversal test (21). 

 

Proposition 2:
15

 The Fisher Ideal price index defined by (13) above is the only index that 

is a homogeneous symmetric average of the Laspeyres and Paasche price indexes, PL and 

PP, and satisfies the time reversal test (21) above. 

 

Proof:  In order to prove this proposition, we only require the homogeneous mean 

function to satisfy the positivity and homogeneity properties, (19) and (20) above. 

 

We define the mean price index P using the function m as follows: 

 

(22) P(p
0
,p

1
,q

0
,q

1
)  m(PL,PP) = m(p

1
q

0
/p

0
q

0
, p

1
q

1
/p

0
q

1
) 

 

where we have used the definitions of PL and PP which are in (3) and (4) above.  Since P 

is supposed to satisfy the time reversal test, we can substitute definition (22) into (21) in 

order to obtain the following equation: 

 

(23) m(p
0
q

1
/p

1
q

1
, p

0
q

0
/p

1
q

0
) = 1/ m(p

1
q

0
/p

0
q

0
, p

1
q

1
/p

0
q

1
). 

 

Letting a  p
1
q

0
/p

0
q

0
 and b  p

1
q

1
/p

0
q

1
, we see that equation (23) can be rewritten as: 

 

(24) m(b
1

,a
1

) = 1/m(a,b). 

 

                                                 
14

 See Diewert (1992a; 218) for early references to this test. 
15

 This result was established by Diewert (1997; 138) 
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Equation (24) can be rewritten as: 

 

(26) 1 = m(a,b) m(b
1

,a
1

) 

           = am(1,b/a) a
1

 m(a/b,1)                                           using property (20) of m 

           = m(1,x) m(x
1

,1)                                                     letting x  b/a 

           = m(1,x) x
1 

m(1,x)                                                   using property (20) of m. 

 

Equation (26) can be rewritten as: 

 

(27) x = [m(1,x)]
2
. 

 

Thus using (19), we can take the positive square root of both sides of (27) and obtain 

 

(28) m(1,x) = x
1/2

. 

 

Using property (20) of m again, we have 

 

(29) m(a,b) = a m(1,b/a) 

                   = a[b/a]
1/2

                                                         using (28) 

                   = a
1/2

b
1/2

. 

 

Now substitute (29) into (22) and we obtain the Fisher Index. Q.E.D. 

 

The bounds (3)-(5) are the best bounds that we can obtain on true cost of living indexes 

without making further assumptions.  In the following sections, we will make further 

assumptions on the class of utility functions that describe the consumer’s tastes for the N 

commodities under consideration.  With these extra assumptions, we are able to 

determine the consumer’s true cost of living exactly.  However, before we can implement 

this strategy, we require some preliminary theoretical material, which will be developed 

in the following two sections. 

 

3. The True Cost of Living Index when Preferences are Homothetic 

    

Up to now, the consumer’s preference function f did not have to satisfy any particular 

homogeneity assumption.  In this section, we assume that f is (positively) linearly 

homogeneous
16

; i.e., we assume that the consumer’s utility function has the following 

property: 

 

(30)  f(q) = f(q) for all  > 0 and all q  0N. 

 

Given the continuity of f, it can be seen that property (30) implies that f(0N) = 0 so that 

the lower bound to the range of f is 0.  Furthermore, f also satisfies f(q) > 0 if q > 0N. 

 

                                                 
16

 This assumption is fairly restrictive in the consumer context.  It implies that each indifference curve is a 

radial projection of the unit utility indifference curve.  It also implies that all income elasticities of demand 

are unity, which is contradicted by empirical evidence.   
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In the economics literature, assumption (30) is known as the assumption of homothetic 

preferences.
17

  Although this assumption is generally not justified when we consider the 

consumer’s overall cost of living index, it can be justified in the context of a 

subaggregate if we assume that the consumer has a separable subaggregator function, 

f(q), which is linearly homogeneous.  In this case, q is no longer interpreted as the entire 

consumption vector, but refers only to a subaggregate such as “food” or “clothing” or 

some more narrowly defined aggregate.
18

  Under this assumption, the consumer’s 

subaggregate expenditure or cost function, C(u,p) defined by (1) above (with a new 

interpretation), decomposes as follows.  For a positive subaggregate price vector p >> 0N 

and a positive subaggregate utility level u, we have the following decomposition of C:  

 

(31)  C(u,p)   min q {pq : f(q)  u} 

                     = min q {pq : (1/u)f(q)  1}                      dividing by u > 0 

                     = min q {pq : f(q/u)  1}                           using the linear homogeneity of f  

                     = u min q {pq /u : f(q/u)  1}     

                     = u min z {pz : f(z)  1}                           letting z = q/u 

                     = u C(1,p)                                                  using definition (1) with u = 1 

                     = u c(p) 

 

where c(p)  C(1,p) is the unit cost function that is corresponds to f.
19

  It can be shown 

that the unit cost function c(p) satisfies the same regularity conditions that f satisfied; i.e., 

c(p) is positive, concave and (positively) linearly homogeneous for positive price 

vectors.
20

  Substituting (31) into (1) and using u
t
 = f(q

t
) leads to the following equations: 

 

(32) p
t
q

t
 = c(p

t
)f(q

t
)                                                        for t = 0,1. 

 

Thus under the linear homogeneity assumption on the utility function f, observed period t 

expenditure on the n commodities (the left hand side of (32) above) is equal to the period 

t unit cost c(p
t
) of achieving one unit of utility times the period t utility level, f(q

t
), (the 

right hand side of (32) above).  Obviously, we can identify the period t unit cost, c(p
t
), as 

the period t price level P
t
 and the period t level of utility, f(q

t
), as the period t quantity 

level Q
t
. 

                                                 
17

 More precisely, Shephard (1953) defined a homothetic function to be a monotonic transformation of a 

linearly homogeneous function.  However, if a consumer’s utility function is homothetic, we can always 

rescale it to be linearly homogeneous without changing consumer behavior.  Hence, we simply identify the 

homothetic preferences assumption with the linear homogeneity assumption. 
18

 This particular branch of the economic approach to index number theory is due to Shephard (1953) 

(1970) and Samuelson and Swamy (1974).  Shephard in particular realized the importance of the 

homotheticity assumption in conjunction with separability assumptions in justifying the existence of 

subindexes of the overall cost of living index.    
19

 Economists will recognize the producer theory counterpart to the result C(u,p) = uc(p): if a producer’s 

production function f is subject to constant returns to scale, then the corresponding total cost function 

C(u,p) is equal to the product of the output level u times the unit cost c(p). 
20

 Obviously, the utility function f determines the consumer’s cost function C(u,p) as the solution to the 

cost minimization problem in the first line of (13).  Then the unit cost function c(p) is defined as C(1,p).  

Thus f determines c.  But we can also use c to determine f under appropriate regularity conditions.  In the 

economics literature, this is known as duality theory.  For additional material on duality theory and the 

properties of f and c, see Samuelson (1953), Shephard (1953) and Diewert  (1974) (1993b; 107-123). 
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The linear homogeneity assumption on the consumer’s preference function f leads to a 

simplification for the family of Konüs true cost of living indices, PK(p
0
,p

1
,q), defined by 

(2) above.  Using this definition for an arbitrary reference quantity vector q, we have: 

 

(33)  PK(p
0
,p

1
,q)  C[f(q),p

1
]/C[f(q),p

0
]  

                           = c(p
1
)f(q)/c(p

0
)f(q)                                                         using (31) twice 

                           = c(p
1
)/c(p

0
). 

 

Thus under the homothetic preferences assumption, the entire family of Konüs true cost 

of living indexes collapses to a single index, c(p
1
)/c(p

0
), the ratio of the minimum costs of 

achieving unit utility level when the consumer faces period 1 and 0 prices respectively.  

Put another way, under the homothetic preferences assumption, PK(p
0
,p

1
,q) is 

independent of the reference quantity vector q.  

 

If we use the Konüs true cost of living index defined by the right hand side of (33) as our 

price index concept, then the corresponding implicit quantity index can be defined as the 

subaggregate value ratio divided by the Konüs price index: 

 

(34) Q(p
0
,p

1
,q

0
,q

1
,q)  p

1
q

1
/{p

0
q

0
 PK(p

0
,p

1
,q)}     

                                 = c(p
1
)f(q

1
)/{c(p

0
)f(q

0
) PK(p

0
,p

1
,q)}                         using (32) twice 

                                 = c(p
1
)f(q

1
)/{c(p

0
)f(q

0
)[c(p

1
)/c(p

0
)]}                        using (33) 

                                 = f(q
1
)/f(q

0
). 

 

Thus under the homothetic preferences assumption, the implicit quantity index that 

corresponds to the true cost of living price index c(p
1
)/c(p

0
) is the utility ratio f(q

1
)/f(q

0
).  

Since the utility function is assumed to be homogeneous of degree one, this is the natural 

definition for a quantity index. 

 

4. Wold’s Identity and Shephard’s Lemma 

 

In subsequent sections, we will need two additional results from economic theory: 

Wold’s Identity and Shephard’s Lemma.   

 

Wold’s (1944; 69-71) (1953; 145) Identity is the following result.  Assuming that the 

consumer satisfies the cost minimization assumptions (1) for periods 0 and 1 and that the 

utility function f is differentiable at the observed quantity vectors q
0
 >> 0N and q

1
>> 0N it 

can be shown
21

 that the following equations hold: 

 

                                                 
21

 To prove this, consider the first order necessary conditions for the strictly positive vector q
t 
 to solve the 

period t cost minimization problem.  The conditions of Lagrange with respect to the vector of q variables 

are: p
t
 = 

t
 f(q

t
) where 

t
 is the optimal Lagrange multiplier and f(q

t
) is the vector of first order partial 

derivatives of f evaluated at q
t
.  Note that this system of equations is the price equals a constant times 

marginal utility equations that are familiar to economists.  Now take the inner product of both sides of this 

equation with respect to the period t quantity vector q
t
 and solve the resulting equation for 

t
.  Substitute 

this solution back into the vector equation p
t
 = 

t
 f(q

t
) and we obtain (35). 
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(35) p
t
/p

t
q

t
 = f(q

t
)/q

t
f(q

t
) ;                                                                                     t = 0,1. 

 

If we assume that the utility function is linearly homogeneous, then Wold’s Identity (35) 

simplifies into the following equations which will prove to be very useful:
22

 

 

(36) p
t
/p

t
q

t
 = f(q

t
)/f(q

t
) ;                                                                                          t = 0,1.  

 

Shephard’s (1953; 11) Lemma is the following result.  Consider the period t cost 

minimization problem defined by (1) above.  If the cost function C(u
t
,p

t
) is differentiable 

with respect to the components of the price vector p, then the period t quantity vector q
t
 is 

equal to the vector of first order partial derivatives of the cost function with respect to the 

components of p; i.e., we have 

 

(37) q
t
 = pC(u

t
,p

t
) ;                                                                              t = 0,1.   

 

To explain why (37) holds, consider the following argument.  Because we are assuming 

that the observed period t quantity vector q
t
 solves the cost minimization problem defined 

by C(u
t
,p

t
), then q

t
 must be feasible for this problem so we must have f(q

t
) = u

t
.  Thus q

t
 is 

a feasible solution for the following cost minimization problem where the general price 

vector p has replaced the specific period t price vector p
t
: 

 

(38) C(u
t
,p)  minq {pq : f(q)  u

t
} ≤ pq

t
                                            for all p >> 0N 

 

where the inequality follows from the fact that is a feasible (but usually not optimal) 

solution for the cost minimization problem in (38).  Now define for each strictly positive 

price vector p the function g(p) as follows: 

 

(39) g(p)  pq
t
  C(u

t
,p). 

 

Using (1) and (38), it can be seen that g(p) is minimized (over all strictly positive price 

vectors p) at p = p
t
.  Thus the first order necessary conditions for minimizing a 

differentiable function of N variables hold, which simplify to equations (37). 

 

If we assume that the utility function is linearly homogeneous, then using (31), 

Shephard’s Lemma (37) becomes: 

 

(40)  q
t
 = u

t
 pc(p

t
) ;                                                                                                  t = 0,1.     

 

Equations (32) can be rewritten as follows: 

 

(41)  p
t
q

t
 = c(p

t
)f(q

t
) = c(p

t
)u

t
 ;                                                                                  t = 0,1. 

 

Dividing equations (40) by equation (41), we obtain the following system of equations: 

                                                 
22

 Differentiate both sides of the equation f(q) = f(q) with respect to  and then evaluate the resulting 

equation at  =1.  We obtain the equation i=1
N
 fi(q)qi = f(q) where fi(q)  f(q)/qi. 
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(42)  q
t
/p

t
q

t
 = c(p

t
)/c(p

t
) ;                                                                                        t = 0,1.  

  

Note the symmetry of equations (36) with equations (42).  It is these two sets of 

equations that we shall use in sections 5-7 below. 

 

Problem 
 

1. Suppose the consumer’s cost function is C(u,p) and assume that C is twice 

continuously differentiable with respect to its arguments.  The consumer’s vector of 

Hicksian demand functions is q(u,p)  pC(u,p).  Assume that the consumer’s dual utility 

function is linearly homogeneous and calculate the consumer’s vector of Hicksian 

income elasticities of demand, lnqn(u,p)/lnu for n = 1,...,N.  Simplify your answer.  

You can assume that qn(u,p) > 0 for each n and u > 0. 

 

5. Superlative Indexes I: The Fisher Ideal Index 

 

Recall that the Fisher price index, PF(p
0
,p

1
,q

0
,q

1
), was defined by (13).  The companion 

Fisher quantity index, QF(p
0
,p

1
,q

0
,q

1
), can be defined as the expenditure ratio for the two 

periods, p
1
q

1
/p

0
q

0
, divided by the price index, PF(p

0
,p

1
,q

0
,q

1
):

23
 

 

(43) QF(p
0
,p

1
,q

0
,q

1
)  [p

1
q

1
/p

0
q

0
]/PF(p

0
,p

1
,q

0
,q

1
) = [p

0
q

1
p

1
q

1
/p

0
q

0
p

1
q

0
]
1/2

.   

 

Suppose the consumer has the following utility function: 

 

(44)  f(q)  [q
T
Aq]

1/2
 ;  A = A

T
;  qS 

 

where A  [aij] is an N by N symmetric matrix that has one positive eigenvalue (that has a 

strictly positive eigenvector) and the remaining N1 eigenvalues are zero or negative.  

The set S is the region of regularity where the function f is positive, concave and 

increasing and hence f can provide a valid representation of preferences over this region.  

It can be shown
24

 that the region of regularity can be defined as follows: 

 

(45) S  {q : Aq >> 0N ; q >> 0N}.  

   

Differentiating the f(q) defined by (44) for qS leads to the following vector of first 

order partial derivatives: 

 

(46) f(q) = Aq/[q
T
Aq]

1/2
 = Aq/f(q)  

 

where the second equation in (46) follows using (44).  We assume that the consumer 

minimizes the cost of achieving the utility level u
t
 = f(q

t
) for periods t = 0,1 and the 

                                                 
23

 Given either a price index P or a quantity index Q, then a matching index can be defined using the 

equation P(p
0
,p

1
,q

0
,q

1
)Q(p

0
,p

1
,q

0
,q

1
) = p

1
q

1
/p

0
q

0
.  Frisch (1930; 399) called this equation the product test.   

24
 See Diewert and Hill (2009). 
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observed period t quantity vector q
t
 belongs to the regularity region S for both periods.  

Evaluate (46) at q = q
t
 and divide both sides of the resulting equation by f(q

t
).  We obtain 

the following equations: 

 

(47) f(q
t
)/f(q

t
) = Aq

t
/f(q

t
)
2
 = p

t
/p

t
q

t
 ;                                                                       t = 0,1 

 

where the second set of equations in (47) follows using Wold’s Identity, (36). 

 

Now use definition (43) for the Fisher ideal quantity index, QF: 

 

(48) QF(p
0
,p

1
,q

0
,q

1
) = [p

0
q

1
p

1
q

1
/p

0
q

0
p

1
q

0
]

1/2
 

                                = [(p
0
/p

0
q

0
)q

1
/(p

1
/p

1
q

1
)q

0
]

1/2
 

                                = [{q
0T

A
T
q

1
/f(q

0
)
2
}/{q

1T
A

T
q

0
/f(q

1
)
2
}]

1/2
                           using (47) 

                                = [f(q
1
)
2
/f(q

0
)
2
]
1/2

                                                              using A = A
T
 

                                = f(q
1
)/f(q

0
). 

 

Thus under the assumption that the consumer engages in cost minimizing behavior during 

periods 0 and 1 and has preferences over the N commodities that correspond to the utility 

function defined by (44), the Fisher ideal quantity index QF is exactly equal to the true 

quantity index, f(q
1
)/f(q

0
).

25
 

 

Let c(p) be the unit cost function that corresponds to the homogeneous quadratic utility 

function f defined by (44).  Then using (32) and (48), it can be seen that   

 

(49)  PF(p
0
,p

1
,q

0
,q

1
)  [p

1
q

1
/p

0
q

0
]/QF(p

0
,p

1
,q

0
,q

1
) 

                                 = [p
1
q

1
/p

0
q

0
]/[f(q

1
)/f(q

0
)]                                         using (48) 

                                 = [c(p
1
)f(q

1
)/c(p

0
)f(q

0
)]/[f(q

1
)/f(q

0
)]                          using (32)        

                                 = c(p
1
)/c(p

0
). 

 

Thus under the assumption that the consumer engages in cost minimizing behavior during 

periods 0 and 1 and has preferences over the N commodities that correspond to the utility 

function defined by (44), the Fisher ideal price index PF is exactly equal to the true price 

index, c(p
1
)/c(p

0
).

26
 

 

A twice continuously differentiable function f(q) of N variables q can provide a second 

order approximation to another such function f
*
(q) around the point q

*
 if the level and all 

of the first and second order partial derivatives of the two functions coincide at q
*
.  It can 

be shown
27

 that the homogeneous quadratic function f  defined by (44) can provide a 

second order approximation to an arbitrary f
*
 around any (strictly positive) point q

*
 in the 

class of twice continuously differentiable linearly homogeneous functions.  Thus the 

homogeneous quadratic functional form defined by (44) is a flexible functional form.
28

  

                                                 
25

 This result was first derived by Konüs and Byushgens (1926).  For the early history of this result, see 

Diewert (1976; 116).     
26

 We also require the assumption that q
0
 and q

1
 belong to the regularity region S defined by (45).  

27
 See Diewert (1976; 130) and let the parameter r equal 2. 

28
 Diewert (1974; 133) introduced this term to the economics literature. 
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Diewert (1976; 117) termed an index number formula QF(p
0
,p

1
,q

0
,q

1
) that was exactly 

equal to the true quantity index f(q
1
)/f(q

0
)  (where f is a flexible functional form) a 

superlative index number formula.
29

  Equation (48) and the fact that the homogeneous 

quadratic function f defined by (44) is a flexible functional form shows that the Fisher 

ideal quantity index QF is a superlative index number formula.  Since the Fisher ideal 

price index PF also satisfies (49) where c(p) is the unit cost function that is generated by 

the homogeneous quadratic utility function, we also call PF a superlative index number 

formula.  

 

It is possible to show that the Fisher ideal price index is a superlative index number 

formula by a different route.  Instead of starting with the assumption that the consumer’s 

utility function is the homogeneous quadratic function defined by (44), we can start with 

the assumption that the consumer’s unit cost function is a homogeneous quadratic.  Thus 

we suppose that the consumer has the following unit cost function: 

 

(50) c(p)  [p
T
Bp]

1/2
 ;  B = B

T
;  pS

* 

 

where B  [bij] is an N by N symmetric matrix that has one positive eigenvalue (that has a 

strictly positive eigenvector) and the remaining N1 eigenvalues are zero or negative.  

The set S
*
 is the price region of regularity where the function c is positive, concave and 

increasing and hence c can provide a valid representation of preferences over this region.  

It can be shown that the region of regularity can be defined as follows:
30

 

 

(51) S
*
  {p : Bp >> 0N ; p >> 0N}.  

   

Differentiating the c(p) defined by (50) for pS
*
 leads to the following vector of first 

order partial derivatives: 

 

(52) c(p) = Bq/[p
T
Bp]

1/2
 = Bp/c(p)  

  

where the second equation in (52) follows using (50).  We assume that p
0
 and p

1
 both 

belong to the regularity region of prices defined by (51). Now evaluate the second 

equation in (52) at the observed period t price vector p
t
 and divide both sides of the 

resulting equation by c(p
t
).  We obtain the following equations: 

 

(53) c(p
t
)/c(p

t
) = Bp

t
/c(p

t
)
2
 = q

t
/p

t
q

t
 ;                                                                      t = 0,1 

 

where the second set of equations in (53) follows using Shephard’s Lemma, equations 

(42).  Now recall the definition of the Fisher ideal price index, PF, given by (13) above:  

 

                                                 
29

 Fisher (1922; 247) used the term superlative to describe the Fisher ideal price index.  Thus Diewert 

adopted Fisher’s terminology but attempted to give some precision to Fisher’s definition of superlativeness.  

Fisher defined an index number formula to be superlative if it approximated the corresponding Fisher ideal 

results using his data set. 
30

 See Diewert and Hill (2009) for the details and see Blackorby and Diewert (1979) for local duality 

theorems. 



 14 

(54) PF(p
0
,p

1
,q

0
,q

1
) = [p

1
q

0
p

1
q

1
/p

0
q

0
p

0
q

1
]

1/2
 

                                = [p
1
(q

0
/p

0
q

0
)/p

0
(q

1
/p

1
q

1
)]

1/2
 

                                = [p
1
{Bp

0
/c(p

0
)
2
}/p

0
{Bp

1
/c(p

1
)
2
}]

1/2
                              using (53) 

                                = [c(p
1
)
2
/c(p

0
)
2
]
1/2

                                                             using B = B
T
 

                                = c(p
1
)/c(p

0
). 

 

Thus under the assumption that the consumer engages in cost minimizing behavior during 

periods 0 and 1 and has preferences over the N commodities that correspond to the unit 

cost function defined by (50), the Fisher ideal price index PF is exactly equal to the true 

price index, c(p
1
)/c(p

0
).

31
 

 

Since the homogeneous quadratic unit cost function c(p) defined by (50) is also a flexible 

functional form, the fact that the Fisher ideal price index PF exactly equals the true price 

index c(p
1
)/c(p

0
) means that PF is a superlative index number formula.

32
 

 

Suppose that the B matrix in (50) is equal to the following matrix of rank 1: 

 

(55) B  bb
T
 ; b >> 0N 

 

where b is an N by 1 vector with strictly positive components.  In this case, it can be 

verified that the region of regularity is the entire positive orthant.  Note that the cost 

function defined by (50) simplifies in this case: 

 

(56) c(p)  [p
T
Bp]

1/2
 = [p

T
bb

T
p]

1/2
 = b

T
p = bp.   

 

Substituting (56) into Shephard’s Lemma (40) yields the following expressions for the 

period t quantity vectors, q
t
: 

 

(57)  q
t
 = u

t
pc(p

t
) = bu

t
 ;                                                                                           t = 0,1.     

 

Thus if the consumer has the preferences that correspond to the unit cost function defined 

by (50) where B satisfies the restrictions (55), then the period 0 and 1 quantity vectors are 

equal to a multiple of the vector b; i.e., q
0
 = bu

0
 and q

1
 = bu

1
.  Under these assumptions, 

the Fisher, Paasche and Laspeyres indices, PF, PP and PL, all coincide.  However, the 

(Leontief fixed coefficient) preferences which correspond to the unit cost function 

defined by (50) and (55) are not consistent with normal consumer behavior since they 

imply that the consumer will not substitute away from more expensive commodities to 

cheaper commodities if relative prices change going from period 0 to 1. 

 

Problem 

                                                 
31

 This result was obtained by Diewert (1976; 133-134).  We also require the assumption that p
0
 and p

1
 

belong to the regularity region S
*
. 

32
 Note that we have shown that the Fisher index PF is exact for the preferences defined by (44) as well as 

the preferences that are dual to the unit cost function defined by (50).  These two classes of preferences do 

not coincide in general.  However, if the N by N symmetric matrix A has an inverse, then it can be shown 

the corresponding unit cost function is equal to c(p)  (p
T
A
1

p)
1/2

 = (p
T
Bp)

1/2
 where B  A

1
.   
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2. Prove that f(q)  (q
T
Aq)

1/2
 is a flexible functional form in the class of functions that are 

positively linearly homogeneous; i.e., for q
*
 >> 0N, find a symmetric A matrix such that 

the following equations are satisfied: 

 

(i)        f(q
*
) = f

*
(q

*
) ; 

(ii)    f(q
*
) = f

*
(q

*
) ; 

(iii). 
2
f(q

*
) = 

2
f
*
(q

*
)  

 

where f
*
(q) is an arbitrary twice continuously differentiable function of q that is 

positively linearly homogeneous.  Hint: You can assume that A can be written in the 

following form: 

 

(iv) A = aa
T
 + B 

 

where a
T
  [a1,...,aN] is an N dimensional row vector of parameters and B is an N by N 

symmetric matrix which satisfies the following N linear restrictions: 

 

(v) Bq
*
 = 0N. 

 

Thus B is an N by N symmetric matrix that has only N(N1)/2 linearly independent 

parameters in its elements.  As a further hint, remember Euler’s Theorems on 

homogeneous functions.      

 

6. Superlative Indexes II: Quadratic Mean of Order r Indexes  
 

It turns out that there are many other superlative index number formulae; i.e., there exist 

many quantity indexes Q(p
0
,p

1
,q

0
,q

1
) that are exactly equal to f(q

1
)/f(q

0
) and many price 

indexes P(p
0
,p

1
,q

0
,q

1
) that are exactly equal to c(p

1
)/c(p

0
) where the aggregator function f 

or the unit cost function c is a flexible functional form.  We will define two families of 

superlative indexes below. 

 

Suppose that the consumer has the following quadratic mean of order r utility function:
33

 

 

(58)  f
 r
(q1,…,qN)  [i=1

N
k=1

N
 aik qi

r/2
 qk

r/2
 ]

1/r
  

 

where the parameters aik satisfy the symmetry conditions  aik = aki for all i and k and the 

parameter r satisfies the restriction r  0.  The regularity region where f
r
 is positive, 

concave and increasing is defined as follows: 

 

(59) S  {q : q >> 0N ; f
r
(q) >> 0N ; 

2
f
r
(q) is negative semidefinite} 

 

where 
2
f
r
(q) is the matrix of second order partial derivatives of f

r
 evaluated at q.  

Diewert (1976; 130) showed that the utility function f
r
 defined by (58) is a flexible 

                                                 
33

 This terminology is due to Diewert (1976; 129). 
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functional form; i.e., it can approximate an arbitrary twice continuously differentiable 

linearly homogeneous functional form to the second order.
34

  Note that when r = 2, f
r
 

equals the homogeneous quadratic function defined by (44) above. 

 

Define the quadratic mean of order r quantity index Q
r
 by: 

 

(59a)  Q
r
(p

0
,p

1
,q

0
,q

1
)  {i=1

N
 si

0
 (qi

1
/qi

0
)
r/2

}
1/r

 {i=1
N
 si

1
 (qi

1
/qi

0
)
r/2

}
1/r

 

 

where si
t
  pi

t
qi

t
/k=1

N
 pk

t
qk

t
 is the period t expenditure share for commodity i.  It can be 

verified that when r = 2, Q
r
 simplifies into QF, the Fisher ideal quantity index. 

 

Using exactly the same techniques as were used in section 5 above, it can be shown that 

Q
r
 is exact for the aggregator function f 

r
 defined by (58); i.e., we have 

 

(60)  Q
r
(p

0
,p

1
,q

0
,q

1
) = f

r
(q

1
)/f

r
(q

0
). 

 

Thus under the assumption that the consumer engages in cost minimizing behavior during 

periods 0 and 1 and has preferences over the N commodities that correspond to the utility 

function defined by (58),
35

 the quadratic mean of order r quantity index QF is exactly 

equal to the true quantity index, f
r
(q

1
)/f

r
(q

0
).

36
  Since Q

r
 is exact for f

r
 and f

r
 is a flexible 

functional form, we see that the quadratic mean of order r quantity index Q
r
 is a 

superlative index for each r  0.  Thus there are an infinite number of superlative quantity 

indexes. 

 

For each quantity index Q
r
, we can use the counterpart to (43) (that the product of the 

price and quantity index must equal the value ratio) in order to define the corresponding 

implicit quadratic mean of order r price index P
r*

: 

 

(61)  P
r*

(p
0
,p

1
,q

0
,q

1
)  p

1
q

1
/{p

0
q

0
Q

r
(p

0
,p

1
,q

0
,q

1
)} 

                                 = c
r*

(p
1
)/c

r*
(p

0
) 

 

where c
r*

 is the unit cost function that corresponds to the aggregator function f
r
 defined 

by (58) above.  For each r  0, the implicit quadratic mean of order r price index P
r*

 is 

also a superlative index. 

 

When r = 2, Q
r
 defined by (59a) simplifies to QF, the Fisher ideal quantity index and P

r*
 

defined by (61) simplifies to PF, the Fisher ideal price index.  When r = 1, Q
r
 defined by 

(59a) simplifies to: 

 

(62) Q
1
(p

0
,p

1
,q

0
,q

1
)  {i=1

N
 si

0
(qi

1
/qi

0
)
1/2

}/{i=1
N
 si

1
(qi

1
/qi

0
)
1/2

} 

                                = {i=1
N
 [pi

0
qi

0
/p

0
q

0
](qi

1
/qi

0
)
1/2

}/{i=1
N
 [pi

1
qi

1
/p

1
q

1
](qi

1
/qi

0
)
1/2

} 

                                                 
34

 This result holds for any predetermined r  0; i.e., we require only the N(N+1)/2 independent aik 

parameters in order to establish the flexibility of f
r
 in the class of linearly homogeneous aggregator 

functions. 
35

 We also require that q
0
 and q

1
 belong to the regularity region S defined by (59). 

36
 See Diewert (1976; 130). 
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                                = {i=1
N
 pi

0
(qi

0
qi

1
)
1/2

/p
0
q

0
}/{i=1

N
 pi

1
(qi

0
qi

1
)
1/2

/p
1
q

1
} 

                                = [p
1
q

1
/p

0
q

0
]/PW(p

0
,p

1
,q

0
,q

1
) 

 

where PW is the Walsh (1901; 398) (1921; 97) price index.  Thus P
1*

 is equal to PW, the 

Walsh price index, and hence it is also a superlative price index. 

 

Suppose the consumer has the following quadratic mean of order r unit cost function:
37

 

 

(63)  c
r
(p1,…,pN)  [i=1

N
k=1

N
 bik pi

r/2
 pk

r/2
 ]

1/r
  

 

where the parameters bik satisfy the symmetry conditions  bik = bki for all i and k and the 

parameter r satisfies the restriction r  0.  Diewert (1976; 130) showed that the unit cost 

function c
r
 defined by (63) is a flexible functional form; i.e., it can approximate an 

arbitrary twice continuously differentiable linearly homogeneous functional form to the 

second order.  Note that when r = 2, c
r
 equals the homogeneous quadratic unit cost 

function defined by (50) above.  The price regularity region for c
r
 is defined as follows: 

 

(64) S
*
  {p : p >> 0N ; c

r
(p) >> 0N ; 

2
c

r
(p) is negative semidefinite}. 

 

Define the quadratic mean of order r price index P
r
 by: 

 

(65)  P
r
(p

0
,p

1
,q

0
,q

1
)  {i=1

N
 si

0
(pi

1
/pi

0
)
r/2

}
1/r

 {i=1
N
 si

1
(pi

1
/pi

0
)
r/2

}
1/r

 

 

where si
t
  pi

t
qi

t
/k=1

N
 pk

t
qk

t
 is the period t expenditure share for commodity i as usual.  It 

can be verified that when r = 2, P
r
 simplifies into PF, the Fisher ideal quantity index. 

 

Using exactly the same techniques as were used in section 5 above and using the 

counterparts to (53) and (54), it can be shown that P
r
 is exact for the unit cost function c

r
 

defined by (63); i.e., we have 

 

(66)  P
r
(p

0
,p

1
,q

0
,q

1
) = c

r
(p

1
)/c

r
(p

0
). 

 

Thus under the assumption that the consumer engages in cost minimizing behavior during 

periods 0 and 1 and has preferences over the N commodities that are dual to the unit cost 

function defined by (63), the quadratic mean of order r price index P
r
 is exactly equal to 

the true price index, c
r
(p

1
)/c

r
(p

0
).

38
  Since P

r
 is exact for c

r
 and c

r
 is a flexible functional 

form, we see that the quadratic mean of order r price index P
r
 is a superlative index for 

each r  0.  Thus there are an infinite number of superlative price indexes. 

 

For each price index P
r
, we can use the product test in order to define the corresponding 

implicit quadratic mean of order r quantity index Q
r*

: 

 

                                                 
37

 This terminology is due to Diewert (1976; 130).  This unit cost function was first defined by Denny 

(1974). 
38

 See Diewert (1976; 133-134). 
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(67)  Q
r*

(p
0
,p

1
,q

0
,q

1
)  p

1
q

1
/{p

0
q

0 
P

r
(p

0
,p

1
,q

0
,q

1
)} 

                                  = f
r*

(q
1
)/f

r*
(q

0
) 

 

where f
r*

 is the aggregator function that is dual to the unit cost function c
r
 defined by (63) 

above.  For each r  0, the implicit quadratic mean of order r quantity index Q
r*

 is also a 

superlative index. 

 

In this section, we have exhibited two families of superlative price and quantity indexes, 

Q
r
 and P

r*
 defined by (59a) and (61), and P

r
 and Q

r*
 defined by (65) and (67) for each r  

0.  A natural question to ask at this point is: how different will these indexes be?  It is 

possible to show that all of the price indexes P
r
 and P

r*
 approximate each other to the 

second order around any point where the price vectors p
0
 and p

1
 are equal and where the 

quantity vectors q
0
 and q

1
 are equal; i.e., we have the following equalities if the 

derivatives are evaluated at p
0
 = p

1
 and q

0
 = q

1
 for any r and s not equal to 0:

39
 

 

(68)     P
r
(p

0
,p

1
,q

0
,q

1
) = P

s
(p

0
,p

1
,q

0
,q

1
)     = P

r*
(p

0
,p

1
,q

0
,q

1
)      = P

s*
(p

0
,p

1
,q

0
,q

1
) ; 

(69)  P
r
(p

0
,p

1
,q

0
,q

1
) = P

s
(p

0
,p

1
,q

0
,q

1
)  = P

r*
(p

0
,p

1
,q

0
,q

1
)   = P

s*
(p

0
,p

1
,q

0
,q

1
) ; 

(70) 
2
P

r
(p

0
,p

1
,q

0
,q

1
) = 

2
P

s
(p

0
,p

1
,q

0
,q

1
) = 

2
P

r*
(p

0
,p

1
,q

0
,q

1
) = 

2
P

s*
(p

0
,p

1
,q

0
,q

1
). 

 

A similar set of equalities holds for the companion quantity indexes, Q
r
 and Q

s*
 for any r 

and s not equal to 0.  The implication of the above equalities is that if prices and 

quantities do not change much over the two periods being compared, then all of the mean 

of order r price indexes will give much the same answer and so will all of the mean of 

order r quantity indexes. 

 

For an empirical comparisons of some of the above indexes, see Diewert (1978; 894-895) 

and Hill (2006).  Unfortunately, Hill (2006) showed that the second order approximation 

property of the mean of order r indexes breaks down as r approaches plus or minus 

infinity.  However, in most empirical applications, we generally choose r equal to 2 (the 

Fisher case) or 1 (the Walsh indexes).  For these cases, the resulting indexes generally 

approximate each other very closely.
40

   

 

Problems 
 

3. Prove (60). 

4. Prove (66). 

 

7. Superlative Indexes III: Normalized Quadratic Indexes  
 

In addition to the family of quadratic means of order r indexes, there is another family of 

superlative indexes which we will exhibit in the present section. 

                                                 
39

 The proof is a straightforward differentiation exercise; see Diewert (1978; 889).  In fact, these derivative 

equalities are still true provided that p
1
 = p

0
 and q

1
 = q

0
 for any numbers  > 0 and  > 0.   

40
 The approximations will be close if we are using annual time series data where price and quantity 

changes are generally smooth.  However, if we are making international comparisons or using panel data or 

using subannual time series data, then the approximations may not be close. 
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Suppose that a consumer has preferences that are dual to the normalized quadratic unit 

cost function defined as follows:
41

 

 

(71) c(p)  p
T
b + (1/2)p

T
Ap/

T
p ;               p >> 0N ;  > 0N ; A = A

T
 ; 

(72) A is negative semidefinite
42

 ; 

 

where p is a positive vector of commodity prices that the consumer faces and the vectors 

b and  are parameter vectors and the symmetric matrix A is a matrix of parameters.   

 

Let p
*
 >> 0N be a reference commodity price vector.  In addition to the restrictions in (71) 

and (72), we can impose the following restrictions on c: 

 

(73) Ap
*
 = 0N. 

 

If the restrictions on A given by (73) are satisfied, then it is straightforward to show that  

we have the following expressions for the first and second order partial derivatives of c 

evaluated at p = p
*
: 

 

(74) c(p
*
) = b ; 

(75) 
2
c(p

*
) = A/

T
p

*
. 

 

Proposition 3: Let  be an arbitrary predetermined vector which satisfies  > 0N.  

Conditional on this predetermined , the c(p) defined by (71), (72) and (73) is flexible at 

the point of approximation p
*
; i.e., there exists a b vector and an A matrix satisfying (73) 

such that the following equations are satisfied: 

 

(76)     c(p
*
) = c

*
(p

*
) ; 

(77) c(p
*
)  = c

*
(p

*
) ; 

(78) 
2
c(p

*
) = 

2
c

*
(p

*
) 

 

where c
*
(p) is an arbitrary twice continuously differentiable, linearly homogeneous, 

increasing and concave function of p defined for p >> 0N.   

 

Proof: Substitute (75) into (78) and solve the resulting equation for A: 

 

(79) A = 
T
p

*


2
c

*
(p

*
). 

 

Note that  > 0N and p
*
 >> 0N implies 

T
p

*
 > 0.  Since c

*
 is concave, it must be the case 

that 
2
c

*
(p

*
) is a negative semidefinite symmetric matrix.  Also, the linear homogeneity 

                                                 
41

 This function was introduced in the producer context by Diewert and Wales (1987; 53) and applied by 

Diewert and Wales (1992) and Diewert and Lawrence (2002) in this context and by Diewert and Wales 

(1988a) (1988b) (1993) in the consumer context.  The advantages of this flexible functional form are 

explained in Diewert and Wales (1993). 
42

 Diewert and Wales (1987; 66) show that this condition is necessary and sufficient for c(p) to be concave 

in p. 
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of c
*
 implies via Euler’s Theorem on homogeneous functions that the following 

restrictions are satisfied: 

 

(80) 
2
c

*
(p

*
)p

*
 = 0N. 

 

Thus the A defined by (79) is negative semidefinite and satisfies the restrictions (73).  

Now substitute (74) into (77) and we obtain the following equation:  

 

(81) b = c
*
(p

*
). 

 

(79) and (81) determine A and b and it can be seen that equations (77) and (78) are 

satisfied.  The final equation that we need to satisfy to prove the flexibility of c(p) is (76) 

but this equation is implied by (77) and another Euler Theorem on homogeneous 

functions: 

 

(82) c(p
*
) = p

*
c(p

*
) and c

*
(p

*
) = p

*
c

*
(p

*
).                                                        Q.E.D. 

 

We note that there are N free bn parameters in the b vector and N(N1)/2 free aij 

parameters in the A matrix, taking into account the symmetry restrictions on A and the 

restrictions (73).  This is a total of N(N+1)/2 free parameters, which is the minimal 

number of free parameters that is required for a linearly homogeneous c(p) to be flexible.  

Thus the normalized quadratic unit cost function defined by (71)-(73) is a parsimonious 

flexible functional form.  In what follows, we do not need to impose the restrictions (73). 

 

The region of regularity for the normalized quadratic unit cost function is the following 

region: 

 

(83) S
*
  {p : p >> 0N; c(p) = b + (

T
p)

1
Ap  (

T
p)

2
App

T
A >> 0N}.   

 

Suppose that a consumer has preferences that can be represented by a normalized 

quadratic expenditure function, C(u,p) equal to uc(p) where c(p) is defined by (71) and 

(72).  Suppose further that the prices that the consumer faces in periods 0 and 1, p
0
 and p

1
, 

are in the regularity region defined by (83) and the corresponding quantity vectors, q
t
, are 

equal to pC(u
t
,p

t
) for t = 0,1 (Shephard’s Lemma) where u

0
 > 0 and u

1
 > 0 are the utility 

levels that the consumer attains for the two periods.  Then Shephard’s Lemma gives us 

the following two equations: 

 

(84) q
0
 = [b + (

T
p

0
)
1

Ap
0
   (1/2)(

T
p

0
)
2

p
0T

Ap
0
]u

0
 ; 

(85) q
1
 = [b + (

T
p

1
)
1

Ap
1
   (1/2)(

T
p

1
)
2

p
1T

Ap
1
]u

1
 . 

 

We now derive an exact index number formula that will enable us to calculate the utility 

ratio u
1
/u

0
 using just the observable price and quantity data for the two situations, 

p
0
,p

1
,q

0
,q

1
 and the parameter vector  (which is assumed to be known to us).   

 

Premultiply both sides of (84) and (85) by the transpose of the price vector (
T
p

0
)p

1
 + 

(
T
p

1
)p

0
.  After some simplification, we obtain the following formulae: 
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(86) [(
T
p

0
)p

1
 + (

T
p

1
)p

0
]

T
q

0
 = {[(

T
p

0
)p

1
 + (

T
p

1
)p

0
]

T
b + p

1T
Ap

0
}u

0
 ; 

(87) [(
T
p

0
)p

1
 + (

T
p

1
)p

0
]

T
q

1
 = {[(

T
p

0
)p

1
 + (

T
p

1
)p

0
]

T
b + p

0T
Ap

1
}u

1
 . 

 

Since A is symmetric, p
1T

Ap
0
 = [p

1T
Ap

0
]

T
 = p

0T
A

T
p

1
 = p

0T
Ap

1
, and hence, we have:

43
 

 

(88) u
1
/u

0
 = [(

T
p

0
)p

1
 + (

T
p

1
)p

0
]

T
q

1
/[(

T
p

0
)p

1
 + (

T
p

1
)p

0
]

T
q

0
  QNQ(p

0
,p

1
,q

0
,q

1
;) 

 

where QNQ(p
0
,p

1
,q

0
,q

1
;) is the normalized quadratic quantity index.

44
  Thus if we know 

, QNQ(p
0
,p

1
,q

0
,q

1
;) can be calculated using only observable price and quantity data 

pertaining to the two situations being considered and (88) tells us that this quantity index 

is equal to the utility ratio u
1
/u

0
, which is equal to f(q

1
)/f(q

0
) where f is the linearly 

homogeneous utility function that is dual to the expenditure function defined by (71)-(72).  

Thus QNQ(p
0
,p

1
,q

0
,q

1
;) is a superlative index number formula since QNQ(p

0
,p

1
,q

0
,q

1
;) is 

exactly equal to the utility ratio f(q
1
)/f(q

0
) where f is dual to a flexible functional form for 

a unit cost function.  

 

It is possible to rewrite (88) in a more intuitive form.  Define the period t real prices or 

normalized prices 
t
 as the nominal period t prices p

t
 divided by the period t fixed weight 

price index (with fixed quantity weights ), p
t
: 

 

(89) 
t
  p

t
/p

t
 ;                                                                                                         t = 0,1. 

 

Now divide the numerator and denominator in (88) by 
T
p

0


T
p

1
 and we obtain the 

following expressions for QNQ(p
0
,p

1
,q

0
,q

1
;): 

 

(90) QNQ(p
0
,p

1
,q

0
,q

1
;) = [

0
 + 

1
]q

1
/[

0
 + 

1
]q

0
 = [(½)

0
 + (½)

1
]q

1
/[(½)

0
 + (½)

1
]q

0
. 

 

Thus utility in period t, f(q
t
), can be set equal to [(½)

0
 + (½)

1
]q

t
, the inner product of 

the arithmetic average of the real prices pertaining to the two periods, (½)
0
 + (½)

1
, and 

the period t quantity vector q
t
.  Thus we have an additive superlative quantity index!

45
   

 

The price index PNQ(p
0
,p

1
,q

0
,q

1
;) that corresponds to the normalized quadratic quantity 

index defined by (88), QNQ(p
0
,p

1
,q

0
,q

1
;), is defined using the product test as follows: 

 

(89a) PNQ(p
0
,p

1
,q

0
,q

1
;)  p

1
q

1
/p

0
q

0
QNQ(p

0
,p

1
,q

0
,q

1
;). 

 

Since the vector  could be any nonnegative, nonzero vector, there is nothing to prevent 

us from setting  equal to q
0
 or q

1
.  We will consider these two special cases in turn.  

 

Case 1:  = q
0
: 

                                                 
43

 This result was obtained by Diewert (1992b; 576). 
44

 Diewert (1992b; 576) introduced this index to the economics literature. 
45

 The Walsh quantity index, QW(p
0
,p

1
,q

0
,q

1
)  [n=1

N
 (pn

0
pn

1
)

1/2
qn

1
]/[n=1

N
 (pn

0
pn

1
)

1/2
qn

0
] = Q

1*
(p

0
,p

1
,q

0
,q

1
), 

also has this additivity property. 
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Replacing  by q
0
 in (88) leads to the following special case for the normalized quadratic 

quantity index: 

 

(90a) QNQ(p
0
,p

1
,q

0
,q

1
;q

0
) = [(q

0
p

0
)p

1
 + (q

0
p

1
)p

0
]q

1
/[(q

0
p

0
)p

1
 + (q

0
p

1
)p

0
]q

0
 

                                      = [(q
0
p

0
)p

1
q

1
 + (q

0
p

1
)p

0
q

1
]/2(p

0
q

0
)(p

1
q

0
) 

                                      = (1/2)[p
1
q

1
/p

1
q

0
] + (1/2)[p

0
q

1
/p

0
q

0
] 

                                      = (1/2)QP(p
0
,p

1
,q

0
,q

1
) + (1/2)QL(p

0
,p

1
,q

0
,q

1
) 

                               

where QL  p
0
q

1
/p

0
q

0
 and QP  p

1
q

1
/p

1
q

0
 are the Laspeyres and Paasche quantity 

indexes. Thus when the parameter vector  is equal to q
0
, the normalized quadratic 

quantity index reduces to the arithmetic average of the Paasche and Laspeyres quantity 

indexes and this index is superlative. 

 

The price index PNQ(p
0
,p

1
,q

0
,q

1
;q

0
) which corresponds to the normalized quadratic 

quantity index defined by (90a), QNQ(p
0
,p

1
,q

0
,q

1
;q

0
), can be defined as follows using 

(89a): 

 

(91) PNQ(p
0
,p

1
,q

0
,q

1
;q

0
)  p

1
q

1
/p

0
q

0
QNQ(p

0
,p

1
,q

0
,q

1
;q

0
)  

                                      = p
1
q

1
/p

0
q

0
{(1/2)[p

1
q

1
/p

1
q

0
] + (1/2)[p

0
q

1
/p

0
q

0
]} 

                                      = {(1/2)[p
0
q

0
/p

1
q

0
] + (1/2)[p

0
q

1
/p

1
q

1
]}

1
 

                                      = {(1/2)[p
1
q

0
/p

0
q

0
]
1

 + (1/2)[p
1
q

1
/p

0 
q

1
]
1

}
1

 

                                      = {(1/2)[PL]
1

 + (1/2)[PP]
1

}
1

. 

 

Thus the superlative price index PNQ(p
0
,p

1
,q

0
,q

1
;q

0
) which matches up with the 

normalized quadratic quantity index QNQ(p
0
,p

1
,q

0
,q

1
;) when we choose  equal to q

0
 is 

the harmonic mean of the Paasche and Laspeyres price indexes, which were defined in 

(3) and (4) above.   

 

Case 2:  = q
1
: 

 

Replacing  by q
1
 in (88) leads to the following special case for the normalized quadratic 

quantity index: 

 

(92) QNQ(p
0
,p

1
,q

0
,q

1
;q

1
) = [(q

1
p

0
)p

1
 + (q

1
p

1
)p

0
]q

1
/[(q

1
p

0
)p

1
 + (q

1
p

1
)p

0
]q

0
 

                                      = 2p
1
q

1
p

0
q

1
/{p

0
q

1
p

1
q

0
 + p

1
q

1
p

0
q

0
} 

                                      = {(1/2)[p
1
q

0
/p

1
q

1
] + (1/2)[p

0
q

0
/p

0
q

1
]}

1 

                                      = {(1/2)[p
1
q

1
/p

1
q

0
]
1

 + (1/2)[p
0
q

1
/p

0
q

0
]
1

}
1 

                                      = {(1/2)QP(p
0
,p

1
,q

0
,q

1
)
1

 + (1/2)QL(p
0
,p

1
,q

0
,q

1
)
1

}
1

 

 

where QL and QP are the Laspeyres and Paasche quantity indexes.  Thus when the 

parameter vector  is equal to q
1
, the normalized quadratic quantity index reduces to the 

harmonic average of the Paasche and Laspeyres quantity indexes, which is a superlative 

index. 

 



 23 

The price index PNQ(p
0
,p

1
,q

0
,q

1
;q

1
) which corresponds to the normalized quadratic 

quantity index defined by (92), QNQ(p
0
,p

1
,q

0
,q

1
;q

1
), can be defined as follows using (89a): 

 

(93) PNQ(p
0
,p

1
,q

0
,q

1
;q

1
)  p

1
q

1
/p

0
q

0
QNQ(p

0
,p

1
,q

0
,q

1
;q

1
)  

                                      = {p
1
q

1
/p

0
q

0
}{(1/2)[p

1
q

0
/p

1
q

1
] + (1/2)[p

0
q

0
/p

0
q

1
]}

 

                                      = (1/2)[p
1
q

0
/p

0
q

0
] + (1/2)[p

1
q

1
/p

0
q

1
] 

                                      = (1/2)PL + (1/2)PP 

                                      = PSB(p
0
,p

1
,q

0
,q

1
) 

 

where PSB(p
0
,p

1
,q

0
,q

1
) is the Sidgwick Bowley price index defined by (12).  Thus the 

price index PNQ(p
0
,p

1
,x

0
,q

1
;q

1
) which matches up with the normalized quadratic quantity 

index QNQ(p
0
,p

1
,q

0
,q

1
;) when we choose  equal to q

1
 is the arithmetic mean of the 

Paasche and Laspeyres price indexes.   

 

As in the previous section, we can ask how different are the various normalized quadratic 

quantity indexes, QNQ(p
0
,p

1
,q

0
,q

1
;), as the predetermined vector  > 0N changes.  Again, 

a straightforward differentiation exercise shows that all of these approximate each other 

to the second order around an equal price (i.e., p
0
 = p

1
) and equal quantity (i.e., q

0
 = q

1
) 

point.  They also approximate all of the mean of order r quantity indexes, Q
r
(p

0
,p

1
,q

0
,q

1
) 

and Q
r*

(p
0
,p

1
,q

0
,q

1
), to the second order around an equal price and equal quantity point.

46
  

Thus for “normal” data sets that do not fluctuate too violently, all of these superlative 

indexes will approximate each other reasonably closely. 

 

The theory of superlative indexes presented in sections 5-7 provide reasonable methods 

for aggregation over commodities when the task at hand is to form subindexes.  However, 

these techniques are not suitable for forming overall cost of living indexes or overall 

quantity indexes when we deal with broad consumer aggregates, because the assumption 

of homothetic preferences is not likely to be satisfied.  Thus in the following sections, we 

look for methods of aggregation that do not depend on the homotheticity assumption.     

 

8. Nonhomothetic Preferences and Cost of Living Indexes 

 

Before we derive our main results, we require some preliminary results.  Suppose the 

function of N variables, f(z1,…,zN)  f(z), is quadratic; i.e.,  

 

(94)  f(z)  a0 + a
T
z + (1/2) z

T
Az ; A = A

T
  

 

where a is a vector of parameters and A is a symmetric matrix of parameters. It is well 

known that the second order Taylor series approximation to a quadratic function is exact; 

i.e., if f is defined by (94) above, then for any two points, z
0
 and z

1
, we have 

 

(95)  f(z
1
)  f(z

0
) = f(z

0
)
T
(z

1
  z

0
) + (1/2)(z

1
z

0
)
T


2
f(z

0
)(z

1
  z

0
). 
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 Diewert (1992b; 578) noted this result. 
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It is less well known that an average of two first order Taylor series approximations to a 

quadratic function is also exact; i.e., if f is defined by (94) above, then for any two points, 

z
0
 and z

1
, we have

47
 

 

(96)  f(z
1
)  f(z

0
) = (1/2)[f(z

0
) + f(z

1
)]

T
[z

1
z

0
]. 

 

Diewert (1976; 118) and Lau (1979) showed that equation (96) characterized a quadratic 

function and called the equation the quadratic approximation lemma.  We will refer to 

(96) as the quadratic identity.   

 

We now suppose that the consumer’s cost function, C(u,p), has the following translog 

functional form:
48

 

  

(97)  lnC(u,p)  a0 + i=1
N
 ai lnpi + (1/2) i=1

N
 k=1

N
 aik lnpi lnpk 

                                     + b0 lnu + i=1
N
 bi lnpi lnu + (1/2) b00 [lnu]

2
 

 

where ln is the natural logarithm function and the parameters ai, aik, and bi satisfy the 

following restrictions: 

 

(98) aik = aki ;                                                                                                   i,k = 1,…,N; 

(99) i=1
N
 ai = 1 ; 

(100) i=1
N
 bi = 0 ; 

(101) k=1
N
 aik = 0 ;                                                                                         i = 1,…,N. 

 

The parameter restrictions (98)-(101) ensure that C(u,p) defined by (97) is linearly 

homogeneous in p.  It can be shown that the translog cost function defined by (97)-(101) 

can provide a second order Taylor series approximation to an arbitrary cost function.
49

 

 

We assume that the consumer engages in cost minimizing behavior during periods 0 and 

1 so that equations (1) hold.  Applying Shephard’s Lemma to the translog cost function 

leads to the following equations:   

 

(102)  si
t
 = ai + k=1

N
 aik lnpk

t
 + bi lnu

t
 ;                                                  i = 1,…,N ; t = 0,1 

 

where as usual, si
t
 is the period t expenditure share on commodity i.  Define the geometric 

average of the period 0 and 1 utility levels as u
*
; i.e., define 

 

(103)  u
*
  [u

0
u

1
]
1/2

 . 

                                                 
47

 To prove that (95) and (96) are true, substitute definition (94) and its derivatives into (95) and (96). 

Recall Problem 10 in Chapter 5: Part I. 
48

 Christensen, Jorgenson and Lau (1975) introduced this function into the economics literature. 
49

 It can also be shown that if b0 = 1 and all of the bi = 0 for i = 1,...,N and b00 = 0, then C(u,p) = uC(1,p)  

uc(p); i.e., with these additional restrictions on the parameters of the general translog cost function, we 

have homothetic preferences.  Note that we also assume that utility u is scaled so that u is always positive.  

Finally, we assume that for each of our translog results, the regularity region contains the observed price 

and quantity data. 
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Now observe that the right hand side of the equation that defines the natural logarithm of 

the translog cost function, equation (97), is a quadratic function of the variables zi  lnpi 

if we hold utility constant at the level u
*
.  Hence we can apply the quadratic identity, (96), 

and get the following equation: 

 

(104)  lnC(u
*
,p

1
)  lnC(u

*
,p

0
) 

   = (1/2)i=1
N
 [lnC(u

*
,p

0
)/lnpi + lnC(u

*
,p

1
)/lnpi ][lnpi

1
lnpi

0
] 

   = (1/2)i=1
N
 [ai+k=1

N
 aik lnpk

0
+bi lnu

*
 + ai+k=1

N
 aik lnpk

1
+bi lnu

*
][lnpi

1
lnpi

0
] 

                                                              differentiating (97) at the points (u
*
,p

0
) and (u

*
,p

1
)                                                       

   = (1/2)i=1
N
 [ai+k=1

N
 aik lnpk

0
+biln[u

0
u

1
]
1/2

+ai+k=1
N
 aik lnpk

1
+biln[u

0
u

1
]
1/2

][lnpi
1
lnpi

0
]  

                                                              using definition (103) for u
* 

   = (1/2)i=1
N
 [ai+k=1

N
 aik lnpk

0
+bi lnu

0
 + ai+k=1

N
 aik lnpk

1
+bi lnu

1
][lnpi

1
lnpi

0
] 

   = (1/2)i=1
N
 [lnC(u

0
,p

0
)/lnpi + lnC(u

1
,p

1
)/lnpi ][lnpi

1
lnpi

0
] 

                                                             differentiating (97) at the points (u
0
,p

0
) and (u

1
,p

1
) 

   = (1/2)i=1
N
 [si

0
 + si

1
][lnpi

1
lnpi

0
]      using (102) 

    lnPT(p
0
,p

1
,q

0
,q

1
).                                                                                       

 

The last equation in (104) defines the logarithm of an observable index number formula, 

PT(p
0
,p

1
,q

0
,q

1
), which is known as the Törnqvist (1936) (1937) Theil (1967) price index.  

Hence exponentiating both sides of  (104) yields the following equality between the true 

cost of living between periods 0 and 1, evaluated at the intermediate utility level u
*
 and 

the observable price index PT:
50

 

 

(105)  C(u
*
,p

1
)/C(u

*
,p

0
) = PT(p

0
,p

1
,q

0
,q

1
). 

 

Since the translog cost function is a flexible functional form, the Törnqvist-Theil price 

index PT is also a superlative index.
51

  The importance of (105) as compared to our earlier 

exact index number results is that we no longer have to assume that preferences are 

homothetic.  However, we do have to choose a particular utility level on the left hand side 

of (105) in order to obtain our new exact result, the geometric mean of u
0
 and u

1
.  

 

It is somewhat mysterious how a ratio of unobservable cost functions of the form 

appearing on the left hand side of the above equation can be exactly estimated by an 

observable index number formula but the key to this mystery is the assumption of cost 

minimizing behavior and the quadratic identity (96) along with the fact that derivatives of 

cost functions are equal to quantities, as specified by Shephard’s Lemma.  In fact, all of 

the exact index number results derived in  sections 5 and 6 can be derived using 

transformations of the quadratic identity along with Shephard’s Lemma (or Wold’s 

identity).
52

   

 

                                                 
50

 This result is due to Diewert (1976; 122). 
51

 Diewert (1978; 888) showed that PT(p
0
,p

1
,q

0
,q

1
) approximates the other superlative indexes P

r
 and P

r*
 to 

the second order around an equal price and quantity point. 
52

 See Diewert (2002). 
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It is possible to generalize the above results using some results in Caves, Christensen and 

Diewert (1982; 1409-1411).  We will conclude this section by explaining those results. 

 

We now assume that in period t, the consumer has the utility function f
t
(q,z

t
) for t = 0,1, 

where z
t
 is a period t vector of environmental or demographic variables that affect the 

consumer’s choices over market goods and services, q.  Note that we are also allowing 

for taste changes as we move from period 0 to 1.  We assume that f
t
(q,z

t
) is nonnegative, 

increasing, continuous and quasiconcave in q for q  0N.  

 

For p >> 0N, and u in the range of f
t
(q,z

t
), we define the consumer’s period t cost function 

C
t
 as follows: 

 

(106) C
t
(u,p

t
,z

t
)  min q {p

t
q :  f

t
(q,z

t
) = u} ;                                                             t = 0,1. 

 

Let q
t
 be the consumer’s observed market consumption vector for period t and define the 

period t utility level as: 

 

(107) u
t
  f

t
(q

t
,z

t
) ;                                                                                                       t = 0,1. 

   

Suppose the consumer faces the market price vector p
t
 in period t for t = 0,1.  As usual, 

we assume that the observed period t consumption vector q
t
 solves the following period t 

cost minimization problem: 

 

(108)  C
t
(u

t
,p

t
,z

t
)  min q {p

t
q : f

t
(q,z

t
) = u

t
} = p

t
q

t
 ;                                                t = 0,1. 

 

Define a family of generalized Konüs true cost of living indexes between periods 0 and 1 

as follows: 

 

(109) PCCD(p
0
,p

1
,u,z,t)  C

t
(u,p

1
,z)/C

t
(u,p

0
,z). 

 

Note that all variables are exactly the same in the numerator and denominator on the right 

hand side of (109), except that the period 1 price vector p
1
 appears in the numerator and 

the period 0 price vector p
0
 appears in the denominator.  Thus the resulting index is a 

valid measure of pure price change. 

 

Caves, Christensen and Diewert (1982; 1409-1410) singled out the two natural special 

cases of (109), where the common variables in the numerator and denominator on the 

right hand side of (109) are chosen to be the period 0 variables or the period 1 variables: 

 

(110) PCCD(p
0
,p

1
,u

0
,z

0
,0)  C

0
(u

0
,p

1
,z

0
)/C

0
(u

0
,p

0
,z

0
) ; 

(111) PCCD(p
0
,p

1
,u

1
,z

1
,1)  C

1
(u

1
,p

1
,z

1
)/C

1
(u

1
,p

0
,z

1
). 

 

It turns out that we will not be able to provide empirical approximations to the individual 

price indexes defined by (110) and (111) but we will be able to provide an exact index 

number formula for the geometric mean of these two indexes.  In order to accomplish this 

task, we will require the following generalization of the quadratic identity, (96): 
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Proposition 4: Let x and y be N and M dimensional vectors respectively and let f
1
 and f

2
 

be two general quadratic functions defined as follows: 

 

(112) f
1
(x,y)  a0

1
 + a

1T
x + b

1T
y + (1/2)x

T
A

1
x +(1/2) y

T
B

1
y + x

T
C

1
y ; A

1T
 = A

1
; B

1T
 = B

1
; 

(113) f
2
(x,y)  a0

2
 + a

2T
x + b

2T
y + (1/2)x

T
A

2
x +(1/2) y

T
B

2
y + x

T
C

2
y ; A

2T
 = A

2
 ; B

2T
 = B

2
  

 

where the a0
i
 are scalar parameters, the a

i
 and b

i
 are parameter vectors and the A

i
, B

i
 and 

C
i
 are parameter matrices for i = 1,2.  Note that the A

i
 and B

i
 are symmetric matrices.  If 

A
1
 = A

2
, then the following equation holds for all x

1
, x

2
, y

1
 and y

2
:
53

 

 

(114) f
1
(x

2
,y

1
)  f

1
(x

1
,y

1
) + f

2
(x

2
,y

2
)  f

2
(x

1
,y

2
) = [xf

1
(x

1
,y

1
) + xf

2
(x

2
,y

2
)]

T
[x

2
  x

1
] . 

 

Proof: Straightforward differentiation and substitution establishes (114).                Q.E.D. 

 

We now suppose that the consumer’s  period t cost function, C
t
(u,p,z), has the following 

functional form:
54

 

  

(115) lnC
t
(u,p,z)  a0

t
 + n=1

N
 an

t
 lnpn + b0

t
 lnu + m=1

M
 b0m

t
 zmlnu + n=1

N
 bn

t
 lnpn lnu  

                + (1/2) b00
t
 [lnu]

2
 + (1/2) i=1

N
 n=1

N
 ain

t
 lnpi lnpn  

                + (1/2) i=1
M

 m=1
M

 bim
t
 zi zm + n=1

N
 m=1

M
 cnm

t
 zmlnpn  

 

where the parameters satisfy the following restrictions, which impose linear homogeneity 

in prices p on C
t
(u,p,z): 

 

(116) ain
t
 = ani

t
 ;                                                                                                 i,n = 1,…,N; 

(117) bim
t
 = bmi

t
 ;                                                                                               i,m = 1,...,M; 

(118) n=1
N
 an

t
 = 1 ; 

(119) n=1
N
 bn

t
 = 0 ; 

(120) i=1
N
 ain

t
 = 0 ;                                                                                           n = 1,…,N; 

(121) n=1
N
 cnm

t
 = 0 ;                                                                                         m = 1,...,M. 

 

It can be shown that the C
t
(u,p,z) defined by (115) can provide a second order 

approximation in the variables u,p and z to an arbitrary twice continuously differentiable 

cost function, C
*
(u,p,z), and hence C

t
 is a flexible functional form. 

 

If the consumer in period t has preferences that are dual to the C
t
 defined by (115)-(121), 

then Shephard’s Lemma implies that the period t market expenditure shares, sn
t
, will 

satisfy the following equations: 

 

(122) sn
t
 = lnC

t
(u

t
,p

t
,z

t
)/lnpn = an

t
 + bn

t
 lnu

t
 + i=1

N
 ani

t
 lnpi + m=1

M
 cnm

t
 zm ;   

                                                 
53

 Balk (1998; 225-226) established this result using the Translog Lemma in Caves, Christensen and 

Diewert (1982; 1412).  The CCD Translog Lemma is simply a logarithmic version of (114). 
54

 Caves, Christensen and Diewert (1982; 1397) assumed that C
t
 was a general translog functional form 

whereas we are assuming a “mixed” translog functional form, which allows the components of the z vector 

to be 0 if this is required. 
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                                                                                                                 n = 1,...,N ; t = 0,1.  

 

With the above preliminaries, we can now prove the following Proposition: 

 

Proposition 5: Suppose the consumer has preferences in period t that are dual to the cost 

function C
t
 defined by (115)-(121) for t = 0,1 and the consumer engages in cost 

minimizing behavior in each period so that equations (108) and (122) are satisfied.  

Finally, suppose that the quadratic coefficients on prices are the same for the two periods 

under consideration so that: 

 

(123) ain
0
 = ain

1
 ;                                                                                                 i,n = 1,…,N. 

 

Then the geometric mean of the two CCD true cost of living indexes defined by (110) 

and (111) is exactly equal to the observable Törnqvist Theil price index PT(p
0
,p

1
,q

0
,q

1
) 

defined in (104) above; i.e., we have: 

 

(124) [PCCD(p
0
,p

1
,u

0
,z

0
,0) PCCD(p

0
,p

1
,u

1
,z

1
,1)]

1/2
 = PT(p

0
,p

1
,q

0
,q

1
). 

 

Proof: Take twice the logarithm of the left hand side of (124).  Using definitions (110) 

and (111) and using the quadratic nature of lnC
t
 in lnp and z (see (115)), we obtain the 

following equation: 

 

(125) lnC
0
(u

0
,p

1
,z

0
)  lnC

0
(u

0
,p

0
,z

0
) + lnC

1
(u

1
,p

1
,z

1
)  lnC

1
(u

1
,p

0
,z

1
)   

            = n=1
N
 [lnC

0
(u

0
,p

0
,z

0
)/lnpn + lnC

1
(u

1
,p

1
,z

1
)/lnpn][lnpn

1
  lnpn

0
] 

                                                                            using assumption (123) and Proposition 4 

            = n=1
N
 [sn

0
 + sn

1
][lnpn

1
  lnpn

0
]             using (122) 

            = 2 lnPT(p
0
,p

1
,q

0
,q

1
)                                using the definition of PT in (104). 

 

Equation (125) is equivalent to (124).                                                                        Q.E.D. 

 

The above result is essentially equivalent to Theorem 5 in Caves, Christensen and 

Diewert (1982; 1410).
55

  The result in Proposition 5 provides a reasonably powerful 

justification for the use of the Törnqvist Theil price index as a measure of a consumer’s 

change in his or her cost of living index even if preferences are nonhomothetic.
56

 

 

Up to this point, we have not studied quantity indexes for the case of nonhomothetic 

preferences.  In the case of a linearly homogeneous aggregator function, f(q) say, we 

have noted that the companion quantity index to the Konüs price index c(p
1
)/c(p

0
) (the 

unit cost ratio) was the ratio of the quantity aggregates f(q
1
)/f(q

0
).  In the following 

section, we will show how to find quantity indexes when preferences are nonhomothetic. 

                                                 
55

 CCD assumed that their translog cost functions were quadratic in the logs of prices and the logs of the 

demographic variables.  Balk (1989) also obtained a special case of Proposition 5 where there were no 

demographic variables but there was taste change.  However, Balk’s case is also a special case of Theorem 

5 in CCD. 
56

 Note that we have provided two separate interpretations for Törnqvist Theil price index in the context of 

nonhomothetic preferences. 
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Problems 
 

5. Prove (96). 

6. Prove (114). 

 

9. Allen Quantity Indexes   
 

Suppose that we make the same assumptions on preferences that we made at the 

beginning of section 2.  Let C(f(q),p) be the consumer’s cost function that is dual to the 

aggregator function f(q).  We again assume cost minimizing behavior in periods 0 and 1 

so that equations (1) are satisfied. 

 

The Allen (1949) family of true quantity indexes, QA(q
0
,q

1
,p), is defined for an arbitrary 

positive reference price vector p as follows:  

 

(126) QA(q
0
,q

1
,p)  C(f(q

1
),p)/C(f(q

0
),p)   

 

The basic idea of the Allen quantity index dates back to Hicks (1941-42) who observed 

that if the price vector p were held fixed and the quantity vector q is free to vary, then 

C(f(q),p) is a perfectly valid cardinal measure of utility.
57

   

 

As was the case with the true cost of living, the Allen definition simplifies considerably if 

the utility function happens to be linearly homogeneous.  In this case, (126) simplifies 

to:
58

 

 

(127) QA(q
0
,q

1
,p) = f(q

1
)C(1,p)/f(q

0
)C(1,p) = f(q

1
)/f(q

0
).  

 

However, in the general case where the consumer has nonhomothetic preferences, we do 

not obtain the nice simplification given by (127). 

 

As usual, it is useful to specialize the general definition of the Allen quantity index and 

let the reference price vector equal either the period 0 price vector p
0
 or the period 1 price 

vector p
1
: 

 

(128) QA(q
0
,q

1
,p

0
)  C(f(q

1
),p

0
)/C(f(q

0
),p

0
) ; 

(129) QA(q
0
,q

1
,p

1
)  C(f(q

1
),p

1
)/C(f(q

0
),p

1
). 

 

Index number formula that are exact for either of the theoretical indexes defined by (128) 

and (129) do not seem to exist, at least for the case of nonhomothetic preferences that can 

be represented by a flexible functional form.  However, we can find an index number 

formula that is exactly equal to the geometric mean of the Allen indexes defined by (128) 

and (129) where the underlying preferences are represented by a flexible functional form.  

Thus assume that the consumer’s preferences can be represented by the general translog 

                                                 
57

 Samuelson (1974) called this a money metric measure of utility. 
58

 See Diewert (1981) for references to the literature. 
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cost function, C(u,p) defined by (97), with the restrictions (98)-(101).  This functional 

form is a special case of the functional form which appears in Proposition 5, with the 

demographic variables omitted and with no taste changes between periods 0 and 1.  

Hence we can apply Proposition 5 in the present context, and conclude that the following 

simplified version of equation (124) is satisfied for our plain vanilla translog consumer 

(but with general nonhomothetic preferences): 

 

(130) [{C(f(q
0
),p

1
)/C(f(q

0
),p

0
)}{C(f(q

1
),p

1
)/C(f(q

1
),p

0
)}]

1/2
 = PT(p

0
,p

1
,q

0
,q

1
). 

  

The implicit quantity index, QT*(p
0
,p

1
,q

0
,q

1
) that corresponds to the Törnqvist Theil price 

index PT(p
0
,p

1
,q

0
,q

1
) is defined as the value ratio, p

1
q

1
/p

0
q

0
, divided by PT.  Thus we 

have: 

 

(131) QT*(p
0
,p

1
,q

0
,q

1
)  [p

1
q

1
/p

0
q

0
]/PT(p

0
,p

1
,q

0
,q

1
) 

                 = [C(f(q
1
),p

1
)/C(f(q

0
),p

0
)]/PT(p

0
,p

1
,q

0
,q
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where the last equality follows using definitions (128) and (129).  Thus the observable 

implicit Törnqvist Theil quantity index, QT*(p
0
,p

1
,q

0
,q

1
), is exactly equal to the geometric 

mean of the two Allen quantity indexes defined by (128) and (129).   

 

Note that in general, the geometric mean of the two “natural” Allen quantity indexes 

defined by (128) and (129) matches up with the geometric mean of the two “natural” 

Konüs price indexes defined by (3) and (4); i.e., using these definitions, we have: 
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Thus in general, these two “natural” geometric mean price and quantity indexes satisfy 

the product test.  Under our translog assumptions, we have a special case of (132) where 
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There is an alternative concept for a theoretical quantity index in the case of 

nonhomothetic preferences that appears frequently in the literature and that is the 

Malmquist (1953) quantity index.  Results that are similar to the results that we have 

already derived can be obtained for this concept but we will leave these results to the 

interested reader.
59
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 See Diewert (1981) and Caves, Christensen and Diewert (1982) for additional material on this index 

concept.  Diewert (1976; 123-124) provides a nonhomothetic translog result for this index number concept 

that is an exact analogue to the result in equation (104) for a nonhomothetic cost function. 
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The economic approach to index number theory is based on either the consumer or 

producer solving an constrained maximization or minimization problem. In this Chapter, 

we have focused on the consumer’s cost or expenditure minimization problem. In 

Chapter 8, we will focus on producer optimization problems and look at the economic 

approach to index number theory from the producer perspective.  

 

 

10. Conclusion 
 

It can be seen that it is not necessary to use econometric methods in order to form 

estimates for price and quantity aggregates; instead, exact index numbers can be used.  In 

particular, empirical index number formula can be used to closely approximate a 

consumer’s cost of living index or his or her welfare change, even in the case of 

nonhomothetic preferences.  
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