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1. Introduction

There is a general feeling in some segments of the business press in Canada that taxes are too

high in Canada and that this is reducing our competiveness.  Our contribution at this conference

will be an attempt to determine empirically what the efficiency costs of taxing capital in Canada

are.

It is very difficult to explain to the layman what exactly are the efficiency costs of a tax.  In

section 2 below, we attempt to explain why taxing the return to capital can be expected to reduce

the real output of an economy in the context of a very simple production function model.  This

explanation will still probably not be very convincing for a layman but it should be helpful for

the economists present at the conference.

In section 3, we discuss another problem that is not that straightforward: namely, how should we

allocate the cost of a durable input across the useful life of the input?  This leads us into a

discussion of the user cost of capital.

Sections 4 to 6 are more technical.  These sections gradually relax some of the restrictive

assumptions made in section 2.  In particular, we need to generalize the model explained in

section 2 to cover the case of many (noncapital) inputs and outputs and many capital inputs.  We

also need to extend the model to an open economy.

Section 7 introduces our preliminary econometric model which is based on relatively recent

developments in the theory of flexible functional forms.  However, in section 8, we discuss a

technical problem with the functional form that is suggested in section 7: namely, it will tend to

generate somewhat artificially trending elasticities in many data sets.  Given the importance of

getting accurate elasticity estimates for the computation of excess burdens, we address this

                                                
1 Our thanks to the Canadian Donner Foundation for partially funding this research over the
years.
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problem in section 8.  We suggest a new functional form that is completely flexible at two data

points instead of the usual single data point.
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Section 9 presents our empirical estimates for a Canadian model estimated using data for the

period 1974-1998.  Our model has 8 commodities: a domestic output, an export commodity, an

import commodity, an aggregate market sector labour input and three reproducible capital stocks

(nonresidential structures, machinery and equipment and inventories).  The last input is land.2

Section 10 uses the elasticity estimates presented in section 9 and the theory of excess burden

measurement developed in section 6 to present empirical estimates of the marginal excess

burdens of capital taxation in Canada for the years 1974-1998.  However, we regard our

estimates as being only very preliminary: there is much more work to be done both on

developing better estimates of the allocation of taxes in Canada and in estimating more

disaggregated econometric models.

Section 11 concludes.

2.  The Excess Burden of Capital Taxation

We illustrate the efficiency costs of taxing capital by considering a very simple model of a closed

economy (i.e., we neglect the effects of international trade in goods).  We suppose that units of

private sector reproducible capital are combined with factors that are held fixed during the short

run to produce units of aggregate output that can be used for either consumption C or investment

I.  Letting L denote the number of units of labour and other factors that are fixed in the short run

we have:

(1) ),( LKfICY =+=

 where f is the production function, Y denotes output and K denotes the beginning of the period

capital stock.  Note that we are assuming that units of the investment good I are perfectly

substitutable with units of the consumption good C.  We also assume that investment goods

produced during the current period are added to the reproducible capital stock at the beginning of

the following period.  Thus, investment goods can be viewed as intertemporal intermediate

inputs into the private production sector: I is produced this period so that it can be used as capital

input next period and offset this period’s depreciation of the capital stock.

                                                
2 Our data set is basically an update of the data described in Diewert and Lawrence (1999).  Of
course, we have made heavy use of Statistics Canada data.
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 We assume that each unit of the capital stock has a physical decline in its efficiency over the

period at the rate ; ie if K units of the capital stock are in place at the beginning of the period,

only ( )K−1  units are available for further use at the end of the current period.

 We consider a steady state capital optimisation problem where investment is set equal to

depreciation; ie we replace I in (1) by K  and maximise KLKfILKfC −=−= ),(),(  with

respect to K.  Another way of viewing depreciation in this formulation is to regard it as a cost of

production; the capital used at the beginning of the period, K, should be assessed a charge equal

to the decline in value of the capital stock due to deterioration and a shorter life.  Another charge

that should be assessed against the starting capital stock is the opportunity cost of capital; ie the

interest cost which will be just sufficient to induce owners of the capital stock to hold the capital

stock through the period.  Thus, if the real interest rate is r*, then the optimal long run capital

stock K° is the solution to the following maximisation problem:

(2) }KrLKfK )*(),({max +− .

 Since we are regarding L as fixed, write the production function f(K,L) as f(K).  Then the first

order necessary condition for K° to solve (2) is:

(3) +=′ *)( rKf o

where f ′  denotes the first derivative of f.  We assume that the following second order sufficient

condition is also satisfied:

(4) .0)( <′′ oKf

The geometry of the unconstrained maximisation problem (2) is illustrated in Figure 1 below.

The curved line through the origin represents the production function constraint, C+I = f(K),

while the straight line through the origin represents the depreciation and interest cost of capital.

The difference between the two lines represents sustainable consumption (after interest

payments) or surplus as a function of the beginning of the period capital stock K.  The maximum

sustainable surplus S° is achieved at the capital stock K° where the slope of the production

function equals the slope of the capital cost function.



MEB of Capital Taxation in Canada

DIEWERT AND LAWRENCE Page 5

Figure 1: Stylised Loss from Capital Taxation
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When capital is taxed, private producers will face the price ** ++r  per unit of capital used,

where *  is the capital tax rate expressed as a fraction of the asset value of capital.3 Thus,

instead of solving (2) in the long run, private producers will be induced to choose the capital

stock K* which solves:

(5) ( ) }*)*({max KrKfK ++− .

We may regard the K* which solves (5) as a function of the tax rate * ; ie K* = K( *).  This

solution to (5) will satisfy the following first order necessary condition:

(6) ***)]([ ++=′ rKf .

 The fact that producers must pay capital taxes to the government increases the cost of using

reproducible capital as an input and the resulting steady state capital stock K( *) is smaller than

the optimal capital stock, Kº = K(0), which solved (2).  The tax distorted surplus, S* ≡ f(K*) – (r*

+ )K* is smaller than the optimal surplus ooo KrKfS )*()( +−… ; (see Figure 1).

                                                
3 We use r* to distinguish the real interest rate from the nominal interest rate r and we use τ* to
distinguish the capital asset tax rate from the capital income tax rate τ.  In the following section,
we will consider more precisely how to define τ*.
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 Figure 1 illustrates qualitatively the effects of taxing reproducible capital — the higher the level

of taxation, the lower will be the long run level of capital utilised and the corresponding surplus.

In what follows, we indicate how a quantitative estimate of the decline in the sustainable surplus

can be obtained.

 First, differentiate equation (6) with respect to * .  We obtain the following equation for the

change in capital due to a small increase in the tax rate, *)(K ′ :

(7) *)]([/1*)( KfK ′′=′ ,

 where f ′′  is the second derivative of the production function and will be negative under the

usual assumptions on the production function.  Now define producer surplus (or sustainable

consumption after interest payments) as a function of the capital tax rate *  as follows:

(8) *)()*(*)]([*)( KrKfS +−… .

 Differentiating (8) with respect to *  and using (6) yields the following formula for the rate of

change of surplus with respect to the level of capital taxation:

(9) *)(**)()]*(*)]([[*)( KKrKfS ′=′+−′=′ .

 Evaluating (9) at 0* =  yields

(10) 0*)( =′S .

 Differentiating (9) with respect to *  and evaluating the resulting derivative at 0* =  yields

(11) ( ) ( ) ( )[ ] 00100 <′′=′=′′ KfKS /

where the second equality in (11) follows from (7) evaluated at 0* =  and the inequality

follows from ( )0KK =o  and (4).  We now use (10) and (11) to form the following second order

Taylor series approximation to *)(S :

(12) ( ) ( ) ( ) ( )

( ) ( ) ( )[ ].0/*2/10

*02/1*00*)(

2

2

KfS

SSSS

′′+=

′′+′+≅

Define *)(L  as the loss of sustainable output as a fraction of optimal output ( )0Y :

(13) ( ) ( ) ( ) ( )0/]*0[* YSSL −… .

Using (12), a second order approximation to *)(L  is

(14) ( ) ( ) ( )[ ]00/*2/1*)( 2 KfYA ′′−… .
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We need to provide an economic interpretation for the second derivative of the production

function, ( )[ ]0Kf ′′ , evaluated at the optimal capital stock ( )0K .  The first derivative of the

production function, ( )[ ]0Kf ′ , is the optimal return to one unit of the capital stock or the rental

price of capital, += *rPK .  Thus, the second derivative can be interpreted as the change in

the rental price due to a small change in the use of capital, ( ) dKKdpK / :

(15) ( )[ ] ( )[ ] 0][0/0 <′′=′′= oKfKfdKKdpK

 where the inequality follows from (4).  We convert dKdpK /  into a non-negative (inverse)

elasticity of demand for capital ε by changing the sign of ( )[ ]0Kf ′′  and multiplying by

( ) ( )[ ] ( ) ( )[ ]0000 KfKKpK K ′= // :

(16) ( )[ ] ( ) ( )[ ] ( )[ ] ( ) ( )+′′−=′′′−… rKKfKfKKf // 00000

 where the second equality in (16) follows from (3).

 It is also useful to define the economy’s optimal capital output ratio γ as the ratio of the optimal

capital stock K(0) to the optimal gross output ( ) ( )[ ]00 KfY = :

(17) ( ) ( )00 YK /… .

 Substitution of (16) and (17) into (14) yields the following formula for the approximate loss of

producer surplus as a fraction of optimal output:

(18) 0)*(/*)2/1(*)( 2 >+= rA .

 For advanced industrial economies, a typical range for the capital tax rate *  is 0.01 to 0.03 (ie

one percent to three percent of the asset value of capital), for the capital output ratio γ is two to

four, for the inverse elasticity of demand for capital ε is 0.5 to 1.0, for the real after tax rate of

return r* is 0.01 to 0.05 and for the depreciation rate δ is 0.04 to 0.08.  If we substitute the

midrange values for these parameters into the right hand side of (18), we find that the

approximate output loss due to capital taxation at the rate 02.0* =  is A(0.02) = 0.0089 or 0.89

percent of gross domestic product.  Table 1 below indicates how the approximate loss of output

*)(A  varies as each parameter varies between the low and high values of its assumed range

while letting the remaining parameters equal their midrange values.

 Table 1: Percentage Loss of Output

 Parameter  Midrange  *  *r    

 Value  Values  0.01  0.03  0.01  0.05  2.00  4.00  0.04  0.08  0.50  1.00

 % loss  0.89  0.22  2.00  1.14  0.73  0.59  1.19  1.14  0.73  1.33  0.67
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 Note that the approximate loss of output increases as the square of the capital tax rate *  so if

*  increases from 0.02 to 0.03 and the other parameters remain at their midpoint values, the loss

of output due to capital taxation increases from 0.89 percent of GDP to two percent of GDP.

These output losses persist year after year so that the present value of these annual output losses

is substantial.

 It should be emphasised that the above efficiency losses induced by the taxation of capital are

entirely avoidable:  equivalent amounts of revenue could be raised by taxing the final outputs of

the private production sector or by taxing primary inputs.  We note that the latter two forms of

taxation do not involve a loss of productive efficiency for the economy whereas taxing an

intermediate input like capital invariably involves a loss of productive efficiency.4

 The efficiency losses listed above in Table 1 are likely to underestimate substantially the actual

losses that are induced by capital taxation in an industrialised economy.  The above model

assumes only one capital stock with an average tax rate of *  which is applied to the asset value

of reproducible capital.  In actual economies, the system of business income taxation invariably

taxes lightly some components of the capital stock and taxes other components very heavily.

The efficiency losses associated with the differential taxation of each type of capital will grow

approximately as the square of the tax rate.  Thus, the large losses associated with the heavily

taxed components will not be balanced by the small losses associated with the lightly taxed

components and the total loss will be much larger than the loss obtained by applying an average

tax rate to the total reproducible capital stock.5

 Another diagram may be helpful in illustrating the efficiency costs of capital taxation.  Note that

*)(K , the capital stock solution to equation (6), can be regarded as the long run demand for

reproducible capital as a function of the tax rate * .  Now rewrite equation (6) as follows:

(19) ***)]*([ ++=++′ rrKf

 ie the demand for capital *)*( ++rK  which solves (19) can be written as a function of the tax

distorted rental price of capital, ** ++r .  In Figure 2 below, the inverse of this demand for

capital function is graphed as the curve DD.  If there were no capital taxes, capital would be

supplied to the private production sector at the rental price +*r  which would just cover the

real interest and depreciation costs of using a unit of capital for the period.  This horizontal

                                                
4 See Diewert (1983a) (1983b) for the productive efficiency approach to tax policy.  Although
capital taxation cannot be justified on productivity or efficiency grounds, it still can be justified
on equity grounds.
5 Reproducible capital stocks are stocks produced by the production sector.  There are no
efficiency losses associated with taxing capital stock components that are fixed (such as land).
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supply of capital curve intersects the demand curve at the point A.  The imposition of the capital

tax *  shifts the supply of capital curve up and this tax distorted supply curve intersects the

demand curve at B.  Note that the equilibrium level of capital used has decreased from K° to K*.

 Figure 2: Alternative Representation of Capital Tax Loss
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 Equation (19) can be integrated to obtain an expression for the gross change in output; ie the

change in gross output produced due to capital taxation before deducting depreciation and

interest costs; ie we have
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The efficiency cost of capital taxation is defined to be the net change in output after deducting
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Thus, the area of the shaded triangular region under the demand curve is a measure of the

efficiency costs of capital taxation.  This is a producer surplus measure of deadweight loss.6

We now linearise the demand curve around the undistorted equilibrium point A and use the

triangle AEF as an approximation to the exact deadweight loss ABC.  From (15) and (16), it can

be verified that the absolute value of the slope of the linear approximation to DD at A is
oKr /)*( + .  The vertical distance EF in Figure 2 is equal to *  so the horizontal distance of

the triangle AEF, AF, will equal the vertical distance *  divided by the slope oKr /)*( + .

Thus,

(22) ( )

( )
( ) *)(0

)*(/*2/1

*}]/)*({/*[2/1

2

AY

rK

KrAEFArea

=

+=

+=

o

o

where we have used (18) to derive the last equality in (22).  Thus, the area AEF in Figure 2 is

equal to the approximate loss *)(A , defined earlier by (18), times optimal GDP, ( )0Y .  We note

that for small tax rates * , the approximate loss measure AEF should be quite close to the exact

loss measure ABC.

The approximate total efficiency loss or excess burden of capital taxation defined by (22) is not

the most interesting number from the viewpoint of economic policy.  A more interesting concept,

initiated by Browning (1976) (1987), is the marginal excess burden of capital taxation.  We

explain this concept in the context of our highly simplified model in the following section.

The approximate total efficiency loss or excess burden of capital taxation defined by (22) is not

the most interesting number from the viewpoint of economic policy.  A more interesting concept,

initiated by Browning (1976) (1987), is the marginal excess burden of capital taxation.  This

concept compares the increase in efficiency loss due to a small increase in the level of capital

taxation to the increase in tax revenue that can be attributed to the tax increase.  Another diagram

may be helpful in explaining the concept.

In Figure 3 below, we have reproduced the approximate deadweight loss triangle AEF as in

Figure 2 and this triangle corresponds to the efficiency loss when the capital tax rate is * .  We

now increase the capital taxation rate by a small amount *  and we note that the increase in

efficiency loss is equal to the triangle EIJ plus the rectangle EFKJ.  The initial tax revenue is

equal to the area of the rectangle EFNM and the new tax revenue is equal to the area of the

                                                
6 Note that our loss measure does not contain a consumer surplus term.  For analogous consumer
surplus measures of deadweight loss, see Browning (1976) (1987) and Findlay and Jones (1982).
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rectangle IKNL.  Thus, the change in tax revenue is equal to the area of IJML minus the area of

EFKJ.  This change in tax revenue (the incremental benefits of the tax increase) can be compared

to the increased efficiency loss, EFKI, (the incremental costs of the tax increase).  Note that if the

initial level of taxation *  is very high, then the incremental tax revenue can be negative; ie the

induced reduction in the use of capital can outweigh the increased tax revenue per unit of capital

used by private producers.

Figure 3: Marginal Excess Burden of Capital Taxation

Kp

K°0

M

K

J
E

F
AN

L I*** +++r

** ++r

+*r

We now provide an analytic formulation that corresponds to the marginal excess burden measure

described by Figure 3.  Equation (18) describes the approximate efficiency loss *)(A  as a

fraction of optimal output ( )0Y .  Differentiating this function with respect to *  gives us the

following formula for the marginal efficiency loss (as a fraction of )0(Y ):

(23) 0)*(/**)( >+=′ rA .

 Define tax revenue as a function of the capital tax rate *)(*, T  as follows:

(24) *)(**)( KT … .

Note that ( ) 00 =T  and the first and second order derivatives of *)(T  evaluated at the no

distortion point 0* =  are:

(25) ( ) ( )00 KT =′
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(26) ( ) ( )020 KT ′=′′ .

Thus a second order Taylor series approximation to *)(T  is

(27) ( ) ( ) 2*0'*0*)( KKT +≅

Define the approximate benefit function *)(B  as the right hand side of (27), divided by the

optimal output ( )0Y :

(28)
( ) ( ) ( )

( ) ( )
(16).and(7)using)*(/**

(17)using0/*0'*

0/]*0'*0[*)(

2

2

2

+−=

+=
+…

r

YK

YKKB

Now differentiate (28) with respect to *  which gives us a formula for the marginal benefit of

increasing capital taxes *)(B′  (as a fraction of optimal output )0(Y ):

(29) )]*(/*21[*)( +−=′ rB .

Finally, define the (approximate) marginal excess burden of capital taxation *)(MEB  as the

ratio of the marginal efficiency cost *)(A′  defined by (23) to the marginal benefit *)(B′
defined by (29):

(30) *]2)*([/**)(/*)(*)( −+=′′= rBAMEB .

Note that *)(MEB  depends not only on the rate of capital taxation *  but it also depends on the

inverse elasticity of demand for capital , the real interest rate *r  and the depreciation rate δ.

However, *)(MEB  does not depend on the capital output ratio γ, in contrast to our earlier

formula for the approximate total efficiency loss (as a fraction of optimal output), *)(A , defined

by (18).

In Table 2 below, we evaluate ( )*MEB  defined by (30) at our midrange estimates for the

capital tax rate )02.0*( = , the real interest rate )04.0*( =r , the depreciation rate ( )06.0=
and the (inverse) elasticity of demand for capital ( )75.0= .  We also table *)(MEB  as each

parameter varies between the low and high values of its assumed range, while letting the other

parameter values equal their assumed midrange values.

Table 2: Marginal Excess Burdens of Capital Taxation

Parameter Midrange * *r

Values Values 0.01 0.03 0.01 0.05 0.04 0.08 0.50 1.00

MEB 0.727 0.211 4.000 1.600 0.471 1.600 0.471 4.000 0.400
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From Table 2, the marginal excess burden of capital taxation when ,02.0* =  ,03.0* =r

060.=  and 750.=  is 72.7 percent.  This means that if the government is contemplating

financing a new recurring program expenditure by increasing capital taxation, then for each

dollar of tax revenue spent on the program, its benefits should exceed 1.727 dollars; ie the loss of

productive efficiency that is induced by a tax increase that yields an extra dollar of revenue is

72.7 cents.  In contrast to the rather small numbers in Table 1, the numbers in Table 2 are rather

large.  For example, if the level of capital taxation increases from two percent to three percent,

then the marginal excess burden increases from 72.7 percent to 400 percent; i.e., the marginal

benefits that accrue to an incremental program that is financed by the increased level of capital

taxation should exceed five dollars for each dollar of revenue raised.  Of that five dollars, one

dollar of benefits is required to make up for the one dollar of tax revenue that is diverted from

private uses and the other four dollars of benefits are required to offset the loss of output that the

increased level of capital taxation induces in the private production sector.

Table 2 indicates that the marginal excess burden of capital taxation is very sensitive to the

parameter values that were inserted into formula (30).  This is unfortunate, because it is difficult

to determine and*,*, r  with great precision in actual economies.  Hence relatively small

errors in these parameters can translate into relatively large errors in the associated excess

burdens.  However, our qualitative assessment of the numbers presented in Table 2 is that the

marginal excess burdens generated by the taxation of reproducible capital are likely to be

considerably larger than the marginal excess burdens generated by taxing consumption or

labour.7 Our reason for this a priori expectation is that even though *  is a relatively small

fraction, it is a relatively large proportion of the undistorted rental price of capital +*r  and

hence has a relatively large effect on the allocation of resources.

3.  The User Cost of Capital

In the national accounts, interest (or more generally, the return to capital) is treated as a transfer

(or as a distribution out of surplus) and not as a cost of production.  Thus, the only cost

associated with the use of reproducible capital in the national accounts is depreciation.  The costs

of using nonreproducible capital inputs like land are totally ignored in the national accounts.

However, economic theory regards interest as a cost of production – it is the cost of inducing

                                                
7 Diewert and Lawrence (1994) (1996) found that the marginal excess burdens for labour and
consumption taxes were in the 10 percent to 20 percent range for the New Zealand economy.
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investors to defer consumption for the period under consideration. Thus, an appropriate cost of

capital from the viewpoint of production theory and the measurement of deadweight costs is the

user cost of capital which includes both interest and depreciation costs.  This concept dates back

at least a century to the economist Walras (1954; 269) and the industrial engineer Church (1901;

907-908).  In more recent times, it was generalized to deal with the complications of the business

income tax by Jorgenson (1996).  We review this literature below.

We begin by deriving the user cost of capital in a world without the taxation of capital.  We

suppose that a firm purchases a capital asset (or durable input) such as a machine, a computer, a

building, an inventory item or a plot of land at the beginning of an accounting period at the price

P. Since a durable asset by definition lasts longer than one period, the firm cannot simply charge

the entire cost of the asset to the first accounting period: it must distribute the cost over the useful

life of the asset. During the period, the asset declines in value according to the depreciation rate

, so at the end of the accounting period, if there were no inflation during the period, the asset

would be worth (1– )P. However, normally there will be some change in the price of the  asset

over the period. Let the inflation rate for a unit of the asset be denoted by , so that the end of

the period price for the depreciated asset will be (1– )(1+ )P. Now we are  ready to work out

what the net cost of using the asset is for the first accounting period. The beginning of the period

user cost of the asset, B, is defined to be the asset’s purchase cost P minus the discounted end of

period market value of the asset:

(31) B  =  P – (1– )(1+ )P/(1+R)

where R is the average cost of capital that the firm faces during the period; i.e., it is an average of

the bond interest rate and the equity cost of capital that it faces at the beginning of the accounting

period.

The above user cost of capital is the one that economists are most familiar with since they are

used to working with discounted values. However, it is also possible to work with the end of the

period user cost U, which simply multiplies B by 1+R:

(32) U  =  P(1+R) – (1– )(1+ )P

(33)      =  [R –  + (1+ )]P.

Formula (32) for the end of period user cost of an asset should be intuitively appealing to

accountants. As part of the cost of using the asset during the period, we need to charge not only

the purchase price P of the asset, but also the direct bond interest costs associated with financing

the purchase of the asset plus the opportunity cost of tying up equity capital in the asset (this is

the cost RP). However, these costs are partially offset by the fact that at the end of the period, we
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have an asset that could be sold for the amount  (1– )(1+ )P. Thus, the net cost of using the

asset during the period (including the opportunity costs of the equity capital that is tied up in the

purchase of the asset) is the right hand side of (32). Note that the end of the period value of the

asset, (1– )(1+ )P, becomes next period’s beginning of the period value of the asset.

Formula (33), which is simply a rearrangement of (32), also has a nice intuitive interpretation. It

says that the user cost of an asset has an interest/opportunity cost of capital equal to RP less a

capital gains component P plus a depreciation component that is indexed for asset inflation

(1+ )P. The first two components of this formula can be combined into the term (R – )P

which can be interpreted as a real interest rate term.

The user cost of capital plays a fundamental role in any economic approach to modeling

producer behavior. It plays the role of a period specific price for a durable capital input and is

analogous to a wage rate (as the price for a unit of labour) or an output price (as the price for a

unit of output).

We now bring business income taxes into the picture.

Unfortunately, the business income tax does not treat capital costs in the manner indicated above

by formulae (32) or (33), which is an economic approach based on current opportunity costs.

Most systems of business income taxation use the conventions of historical cost accounting to

define period by period capital costs that are to be used in defining income for tax purposes.

Thus, for tax purposes, an accounting user cost A for the asset described in the previous section

might be defined by something like the following formula:

(34) A  =  [fR + d]P

where f is the fraction of interest and equity cost that is tax deductible (typically interest costs are

deductible but equity opportunity costs are not so that f  would depend on the firm’s debt-equity

ratio) and d is the depreciation rate for the asset that is prescribed by the tax code. The actual

formula for A is typically a lot more complicated than the right hand side of (34) due to various

incentives and exceptions that are invariably written into the tax code and due to the lack of

indexation of depreciation allowances for inflation.

We continue to suppose the firm uses only one capital input, say the one described in the

previous section. Suppose further that the firm purchases K units of this durable input at the

beginning of the accounting period and has a cash flow (the value of outputs produced during the

period minus the value of nondurable inputs used during the period) of CF during the period.

Then the firm’s profits before income taxes would be CF – UK where U is the user cost

described by (32) or (33) above. The firm’s profits after business income taxes, , are equal to
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before tax profits, CF – UK, minus the business tax rate, , times taxable income as defined by

the tax code, CF – AK; ie we have the following definition for after business tax income:

(35)  =  [CF – UK] – [CF – AK]

(36)      =  (1 – )[CF – UK] + [A – U]K                    rearranging terms

(37)      =  (1 – )[CF – {U + [ /(1 – )](U – A)}K]     rearranging terms

(38)      =  (1 – )[CF – {U + W}K]                             using (39)

where the business tax wedge W is defined as:

(39) W  =  [ /(1 – )](U – A).

Note that if either the business income tax rate  equals 0 or if the no tax economic user cost U

equals the tax accounting user cost A, then the tax wedge W is 0 and the tax distorted user cost of

capital U + W is equal to the undistorted user cost of capital U.

The tax distorted user cost of capital U + W was first derived by Jorgenson (1963) and it is

widely used by economists when they model the effects of the business income tax. In order for

us to use it in our study, we would need a time series of business tax rates  and a time series of

accounting user costs A for the various types of asset in our model.

However, the (business) tax distorted user cost of capital, U + W, is not the end of the story when

we want to calculate the deadweight cost of taxes on capital, because the above material neglects

the fact that capital is not only taxed at the business level, it is also taxed at the personal level. In

addition, there are various specific commodity taxes that fall on various capital stock

components, like property taxes and sales taxes on purchases of machinery and equipment and

structures.

The return to financial capital (i.e., interest and dividends and realized capital gains) is taxed at

the personal level. The user costs developed above assumed that the firm faced the average cost

of capital R. However, the individual investor does not receive this entire return to capital: the

dividends and interest received by the domestic investor are subject to personal taxation at the

rate t say (foreign investors are typically subject to interest or dividend withholding taxes at rates

which approximate the personal tax rate). Thus, the individual investor receives only the after

personal tax rate of return r where r is related to R as follows:

(40) r  =  (1 – t)R.

Thus, removing the tax distortions on capital would involve eliminating both the business

income tax (or setting A equal to U) as well as the personal tax on the return to capital. To find
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the completely undistorted user cost of capital, we need only replace R in (32) or (33) by r. Thus,

define the undistorted user cost of capital U* by:

(41) U*  =  [r –  + (1 + )]P.

Using (40), it can be seen that the relationship of our initial economic user cost of capital U

defined by (33) and our new undistorted user cost of capital U* defined by (41) is:

(42) U  =  U* + [t/(1 – t)]rP

(43)      =  U* + W*

where the personal taxation wedge W* is defined as:

(44) W*  =   [t/(1 – t)]rP.

In words, taxation of capital income at the personal level causes the undistorted user cost of

capital U* to increase by the personal taxation wedge, W*. This analysis has neglected the

effects of the business income tax.  However, the analysis presented in the previous section is

still valid but in order to determine the distortions due to both the business and personal taxation

of capital, we need to replace U in (38) by U* + W*.  The resulting formula for after business tax

income becomes:

(45)  =  (1 – )[CF – {U*  + W* +W}K].

Thus, the total tax wedge created by taxation at both the business and personal levels is:

(46) T  =  W* + W

where the personal tax wedge W* is defined by (44) and the business tax wedge W is defined by

(39).

Unfortunately, we did not have an accurate information base that would have allowed us to

construct the above personal and business tax wedges defined above.  However, there is little

evidence that businesses actually rearrange terms as was done in (35) to (38) above to obtain the

Jorgenson tax adjusted user costs U + W. There is, however, some evidence that firms do use the

user costs defined by (32) or (33) (see Diewert and Fox 1999). Typically, the business income

tax is ignored entirely in cost allocation models and simply treated as a charge against earnings.

In this case, a sophisticated business might treat the amount of business tax that it pays during

the accounting period as a capital charge that should be spread evenly on its assets. Following

this line of thought, turn to our one asset example again. Define the business asset tax rate * as:

(47) *  =  (business income taxes paid during the period)/PK
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and the tax adjusted user cost becomes:

(48) U’  =  U + *P

(49)       =  [R –  + * + (1+ )]P               using (33)

(50)       =  U* + W* + *P                            using (43)

(51)       =  U* + t*P + *P

where we have converted the personal tax wedge W* into a tax wedge as a fraction of the asset

value; ie t* can be defined as:

(52) t*  =  (personal capital taxes paid during the period)/PK.

The user cost formula (51) is the user cost formula that we use in this study. From the viewpoint

of real life firm accounting practices, the case for using this user cost formula is just as strong as

the case for using the Jorgensonian user cost formula U* + W* + W. Essentially, we have

replaced the Jorgensonian tax wedge W by the aggregate business and personal tax wedge (t*+

*)P.

The approach we adopt in this report to calculating the capital tax rate is to assume that the tax

rate is the same across the various asset categories. It is calculated by taking the ratio of actual

capital tax payments to the value of assets. This produces an estimate of the average capital tax

rate for each year.

Using the average capital tax rate has the advantage of being based on relatively ‘hard’,

observable data and, for most countries, it will provide a reasonable approximation of the capital

tax burden faced by producers. However, an argument can also be mounted that deadweight loss

studies should use estimates of the effective marginal tax rate (EMTR) producers face as this will

be a closer approximation to the rate producers respond to in making investment and other

production decisions. While the use of EMTRs may be desirable, their construction is

informationally very demanding. We hope to implement this approach in the future. In the

meantime, we use the average tax rate on capital to proxy the tax burden producers face and to

test our producer model.

To summarize: we assume that the undistorted user cost of capital for each of our three assets has

the following form:

(53) U* = uP ≡ [R − α + δ(1+α)]P
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where P is the beginning of the period asset price, R is a tax free opportunity cost of capital8, α is

an anticipated asset inflation rate9 and δ is our assumed geometric or declining balance

depreciation rate.  The assumed depreciation rate for nonresidential structures was 3.5% (i.e.,

δNR ≡ .035), for machinery and equipment was 12.5% (i.e.,  δME ≡ .125) and for inventory stocks

was 0 (i.e.,  δIS ≡ 0).  The nominal interest rates or opportunity costs of capital R are tabled below

in Table 4 along with our estimated asset inflation rates, αNR, αME and αIS for nonresidential

structures, machinery and equipment and inventory stocks respectively.  The beginning of the

period asset prices, PNR, PME and PIS are tabled in Table 5 below.  The undistorted user costs in

percentage form, the terms u in (53), are tabled in Table 4 below for each of our three assets.

To obtain the final tax distorted user cost for each asset, we need to add the total distortion

wedge, wP, to the undistorted user costs defined by (53).  These wedge terms w for each asset

are defined as follows:

(54) wNR ≡ τ* + t* + τPNR + τCNR ;

(55) wME ≡ τ* + t* + τCME ;

(56) wIS  ≡ τ* + t*

where τ* + t*  is the combined (asset) business and personal tax rate on capital, τPNR is the

property tax rate on nonresidential capital, and τCNR and τCME are the commodity tax rates times

the undistorted user costs uNR and uME respectively.10  These tax rates and are listed in Table 3

below along with R, the nominal opportunity cost of capital, and the three (anticipated) asset

inflation rates, αNR, αME and αIS. The capital tax rates are also graphed in Figure 4.

                                                
8 We assume that 1+R =(1 + .05)(1 + αC) where r = .05 is an assumed required real rate of return
and αC is a smoothed inflation rate for Canadian consumer prices. We used smoothed ex post
actual consumer price inflation rates to proxy these anticipated inflation rates.  We used the
Lowess nonparametric smoothing option in Shazam with the smoothing parameter f = .2.
9 We used smoothed ex post asset inflation rates to proxy these anticipated asset inflation rates.
We used the Lowess nonparametric smoothing option in Shazam with the smoothing parameter f
= .2.
10 The taxation of purchases of capital inputs by the use of Provincial sales taxes (and some
Federal sales taxes before the imposition of the GST) leads to a tax distortion at the moment of
purchase. We essentially distribute this distortion over the useful life of the asset so the tax rates
listed in Table 3 are lower than the instantaneous rate of taxation.
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Table 3: Tax Rates and Asset Inflation Rates (percentages)

Year *+t* PNR CNR CME R NR ME IS

1974 4.43 1.41 0.22 2.57 14.57 11.22 9.43 12.90
1975 3.73 1.33 0.27 1.85 13.71 8.60 8.61 9.11
1976 3.41 1.39 0.29 2.06 12.78 6.94 6.47 5.66
1977 3.21 1.41 0.28 2.28 13.05 7.57 4.58 6.52
1978 3.24 1.39 0.26 2.54 14.17 9.25 2.54 10.11
1979 3.40 1.29 0.27 2.51 15.25 10.18 1.85 12.38
1980 3.50 1.30 0.30 2.49 15.43 9.11 1.54 11.69
1981 3.75 1.28 0.35 2.41 14.31 6.45 1.37 8.49
1982 3.36 1.23 0.35 2.27 12.33 4.11 0.83 5.25
1983 3.28 1.22 0.34 2.37 10.48 2.56 -0.98 2.94
1984 3.56 1.25 0.31 2.58 9.46 2.60 -1.95 2.01
1985 3.54 1.26 0.28 2.54 9.19 3.34 -2.02 1.83
1986 3.62 1.16 0.27 2.78 9.24 3.93 -1.48 2.02
1987 3.84 1.05 0.25 2.76 9.32 4.43 -0.72 2.40
1988 4.11 0.94 0.28 2.80 9.53 3.78 -0.76 2.21
1989 4.21 0.94 0.33 2.04 9.46 1.97 -1.37 1.14
1990 4.09 0.93 0.35 2.17 8.80 0.56 -1.96 0.04
1991 3.74 0.96 0.33 0.94 7.91 0.22 -1.30 0.39
1992 3.57 0.99 0.28 0.79 6.78 0.97 0.18 1.31
1993 3.61 0.97 0.25 0.75 6.35 1.57 0.72 2.73
1994 3.82 0.96 0.25 0.78 6.39 1.56 0.00 2.47
1995 4.15 0.92 0.26 0.82 6.53 1.37 -0.97 -0.41
1996 4.53 0.92 0.25 0.87 6.58 1.64 -2.23 -2.10
1997 4.71 0.91 0.25 0.92 6.65 1.99 -3.63 -3.50
1998 4.40 1.03 0.23 0.97 6.67 2.42 -5.03 -4.81

Figure 4: Capital Tax Rates
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It can be seen that the combined personal and business tax rates on the return to capital are in the

3.5% to 4.5 % range for our sample period, 1974-1998.  Our estimated property tax rate which

falls on the use of structures is in the .9% to 1.4% per year range.  Our estimated commodity tax

rate on the use of structures is in the .2% to .35% range and on the use of machinery and

equipment is in the 2.5% to .75% range.  The sum of all of these tax rates leads to an overall

wedge tax rate in the 5% to 6% range for nonresidential structures, in the 4% to 7% range for

machinery and equipment and in the 3.5% to 4.7% range for inventory stocks.

The undistorted user costs for nonresidential structures, uNR, machinery and equipment, uME, and

for inventory stocks, uIS, (in proportional form; see (53) above) are listed in Table 4 below, along

with the tax wedges. The undistorted user costs and tax wedges are then graphed in Figures 5 and

6, respectively.

Table 4: Undistorted User Costs (deflated by Asset Prices) and Tax Wedges

Year uNR uME uIS wNR wME wIS

1974 0.0724 0.1882 0.0166 0.0605 0.0700 0.0443
1975 0.0891 0.1868 0.0460 0.0533 0.0559 0.0373
1976 0.0958 0.1962 0.0712 0.0508 0.0547 0.0341
1977 0.0925 0.2154 0.0652 0.0490 0.0549 0.0321
1978 0.0875 0.2445 0.0406 0.0489 0.0578 0.0324
1979 0.0892 0.2614 0.0287 0.0496 0.0591 0.0340
1980 0.1014 0.2658 0.0373 0.0510 0.0598 0.0350
1981 0.1158 0.2561 0.0582 0.0538 0.0616 0.0375
1982 0.1187 0.2411 0.0708 0.0495 0.0563 0.0336
1983 0.1150 0.2383 0.0754 0.0485 0.0566 0.0328
1984 0.1045 0.2366 0.0745 0.0512 0.0614 0.0356
1985 0.0947 0.2346 0.0736 0.0508 0.0608 0.0354
1986 0.0894 0.2304 0.0722 0.0504 0.0639 0.0362
1987 0.0854 0.2245 0.0692 0.0514 0.0660 0.0384
1988 0.0938 0.2269 0.0731 0.0532 0.0691 0.0411
1989 0.1106 0.2316 0.0832 0.0548 0.0625 0.0421
1990 0.1176 0.2301 0.0875 0.0537 0.0626 0.0409
1991 0.1120 0.2155 0.0752 0.0503 0.0469 0.0374
1992 0.0934 0.1912 0.0547 0.0484 0.0436 0.0357
1993 0.0833 0.1822 0.0362 0.0483 0.0436 0.0361
1994 0.0838 0.1888 0.0392 0.0503 0.0460 0.0382
1995 0.0871 0.1987 0.0694 0.0534 0.0497 0.0415
1996 0.0849 0.2103 0.0868 0.0570 0.0540 0.0453
1997 0.0823 0.2232 0.1015 0.0587 0.0563 0.0471
1998 0.0784 0.2357 0.1148 0.0566 0.0537 0.0440
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Figure 5: Undistorted User Costs
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Figure 6: Tax Wedges
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Finally, the beginning of the period asset prices (before commodity taxes), PNR, PME and PIS  are

listed in Table 5 along with the corresponding beginning of the period capital stocks, KNR, KME

and KIS (in billions of 1974 Canadian dollars).  The capital stocks were constructed using the

perpetual inventory method using investment data back to 1926.  Starting stocks for 1926 for

nonresidential structures and machinery and equipment were constructed using the assumed

depreciation rates plus the assumption that investment had been growing at a 2% rate for all

years prior to 1926.

Table 5:  Capital Prices and Quantities (in billions of 1974 dollars)

Year PNR PME PIS KNR KME KIS

1974 4.43 1.41 0.22 2.57 6.05 7.00
1975 3.73 1.33 0.27 1.85 5.33 5.59
1976 3.41 1.39 0.29 2.06 5.08 5.47
1977 3.21 1.41 0.28 2.28 4.90 5.49
1978 3.24 1.39 0.26 2.54 4.89 5.78
1979 3.40 1.29 0.27 2.51 4.96 5.91
1980 3.50 1.30 0.30 2.49 5.10 5.98
1981 3.75 1.28 0.35 2.41 5.38 6.16
1982 3.36 1.23 0.35 2.27 4.95 5.63
1983 3.28 1.22 0.34 2.37 4.85 5.66
1984 3.56 1.25 0.31 2.58 5.12 6.14
1985 3.54 1.26 0.28 2.54 5.08 6.08
1986 3.62 1.16 0.27 2.78 5.04 6.39
1987 3.84 1.05 0.25 2.76 5.14 6.60
1988 4.11 0.94 0.28 2.80 5.32 6.91
1989 4.21 0.94 0.33 2.04 5.48 6.25
1990 4.09 0.93 0.35 2.17 5.37 6.26
1991 3.74 0.96 0.33 0.94 5.03 4.69
1992 3.57 0.99 0.28 0.79 4.84 4.36
1993 3.61 0.97 0.25 0.75 4.83 4.36
1994 3.82 0.96 0.25 0.78 5.03 4.60
1995 4.15 0.92 0.26 0.82 5.34 4.97
1996 4.53 0.92 0.25 0.87 5.70 5.40
1997 4.71 0.91 0.25 0.92 5.87 5.63
1998 4.40 1.03 0.23 0.97 5.66 5.37

In the next section, we show how the simple excess burden model explained in section 2 above

can be generalized to cover the case of many (noncapital) outputs and inputs and 3 types of

reproducible capital (compared to the single reproducible capital stock model of section 2).

4. Excess Burdens in a Single Capital Model Using Cash Flow Profit Functions

 

 The model presented in section 2 above was adequate to introduce the reader to the basic

concepts involved in measuring the deadweight loss due to the taxation of capital.  However, this
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model suffered from a number of defects including: (i) it was highly aggregated; (ii) the

investment good was assumed to be perfectly substitutable with the consumption good and (iii)

the economy was closed, ie there was no international trade in goods and services.  In this

section, we shall relax the above restrictions except we continue to assume that there is only one

reproducible capital stock in the economy.  In the following section, we shall deal with the

multiple stock case.

 In order to simplify our derivation of excess burden formulae, we shall make use of the

producer’s profit function.  The profit function simply provides an alternative method for

representing the production function, or more generally, the producer’s production possibilities

set.11 The use of the profit function not only facilitates the derivation of deadweight loss

formulae but it is also very convenient from the viewpoint of the econometric estimation of

production functions or technology sets.  For additional material on profit functions and

references to the literature, see the section on our producer model methodology.

 We assume that there are M non-capital variable outputs and inputs that are produced and

utilised in the private production sector.  The positive prices that producers face in period t for

these M variable commodities are denoted by (p1
t,…,pM

t) ≡ pt.  The corresponding variable

outputs and inputs produced and used during period t are denoted by the quantity vector yt ≡
(y1

t,..,yM
t).  The list of outputs includes consumption goods and services, government purchases

of goods and services from the private sector, an investment good that corresponds to the single

reproducible capital stock in our model, exports, imports and labour inputs.  If commodity m is

an input, then ym
t has a negative sign.  The price of one unit of the reproducible capital stock is Pt

in period t.  The private business sector of the economy utilises the beginning of period t capital

stock Kt and the fixed factor input Ft.  The period t set of feasible net output vectors y,

conditional on a beginning of the period capital stock Kt and fixed factor input Ft is denoted by

the set St.  The private sector’s period t cash flow profit function  t is defined as follows:

 (57)  t(pt, Kt, Ft) ≡ max y {pt y : (y, Kt, Ft ) ∈ St }

 where pt y denotes the inner product of the vectors pt and y.  In words, π t(pt, Kt, Ft) is the

maximum value added less the value of labour inputs that the private sector can produce given

that producers face the prices pt for these variable outputs and inputs and given that producers

have the fixed stocks Kt and Ft of reproducible and non-reproducible capital available to them at

the beginning of period t.  In other words, t(pt, Kt, Ft) is the maximum cash flow that the

                                                
11 For additional material on profit functions and duality theory, see Diewert (1974a) (1993).



MEB of Capital Taxation in Canada

DIEWERT AND LAWRENCE Page 25

economy can earn in period t, given that it faces the price vector pt for variable inputs and

outputs and has the use of Kt units of reproducible capital and Ft units of fixed factors.

 The counterpart to our earlier tax distorted profit maximisation problem (5) is now the following

problem:

(58)  max K {  t(pt, K, Ft) − (ut + wt)Pt K} ≡  t(pt, (ut + wt)Pt, Ft)

where ut is the period t (deflated) undistorted user cost of capital defined in (53) in the previous

section and wt is the period t (deflated) total tax distortions wedge defined by one of (54)-(56) in

the previous section.  Note that the optimised objective function in (58) defines another profit

function  t, which we call the rents profit function.  We will use the rents profit function in the

next section.  We assume that the observed period t capital stock Kt satisfies the first order

necessary conditions for the unconstrained maximisation problem in (57):

(59)   t(pt, K, Ft)/ K = (ut + wt)Pt .

Equation (59) is the counterpart to our old equation (6).  For an arbitrary capital tax wedge w, we

denote the capital solution to (59), where w replaces wt, by K(w).  Substituting K(w) into (59) and

differentiating with respect to w yields the following equation for K′(wt):

(60)  K′(wt) = [  2  t(pt, Kt, Ft)/ K2]−1 Pt.

Recall the definition of the producer surplus function S(w), defined by (8) above.  This function

evaluated the outputs produced and the inputs used by the private sector at undistorted prices.

Using the cash flow profit function and the capital demand function K(w), which solves (59)

when the observed period t distortion term wt is replaced by an arbitrary distortion term w, we

redefine the surplus function for period t12, S(w) as follows:

(61)  S(w) ≡  t(pt, K(w), Ft) − ut Pt K(w).

Differentiating S(w) with respect to w yields the following equations:

(62)  S′(w) = [  t(pt, K(w), Ft)/ K] K′(w) − ut Pt K′(w)

                      = [(ut + w)Pt] K′(w) − ut Pt K′(w)                using (59) with w replacing wt

                      = w Pt K′(w).

Evaluating (61) at w = 0 and w = wt leads to the following equalities:

                                                
12 The capital demand function, K(w), and the surplus function, S(w), should actually be denoted
as K t(w) and St(w) to indicate that these functions depend on the period t price data and on the
period t cash flow function πt.  The function πt depends on time t due to technical change.
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(63)  S′(0) = 0;

(64)  S′(wt) = wt Pt K′(wt)

                      = wt Pt [  2  t(pt, Kt, Ft)/ K2]−1 Pt                           using (60).

It is possible to approximate S(wt) − S(0) by a second order Taylor series expansion, as we did in

section 2 above.  Of course, if S(w) is (locally) a quadratic function, this approximation will be

(locally) exact.  Another approximation for S(wt) − S(0) that is exact if S(w) is quadratic is the

following one13:

(65)  S(wt) − S(0) ≈ (1/2) [S′(wt) + S′(0)] [wt − 0]

                                 = (1/2) S′(wt) wt                                         using (63)

                                 = (1/2) (wt)2 Pt [∂2  t(pt, Kt, Ft)/ K2]−1 Pt   using (64)

Thus, we have the following quadratic approximation for S(0) − S(wt):

(66) S(0) − S(wt) ≈ − (1/2) (wt)2 Pt [  2  t(pt, Kt, Ft)/ K2]−1 Pt .

Recall our earlier definition (13) of the loss of surplus due to the distortion wedge w* as a

fraction of undistorted GDP, [S(0) − S(w*)]/Y(0), and the second order approximation to this

loss, A(w*) defined by (14).  We will now express the loss as a fraction of the tax distorted level

of GDP, which we denote by Y(wt) for period t.  Thus, using (58), our new second order

approximation to the loss of output in period t is:

(67)   A(wt) ≡ − (1/2) (wt)2 Pt [  2  t(pt, Kt, Ft)/ K2]−1 Pt / Y(wt).

Given an econometrically estimated cash flow function  t, we can readily calculate A(wt) defined

by (67).

We turn now to the problem of generalising our old marginal cost function defined earlier by

(23).  We now define the cost of the system of capital taxation function C(w) as the difference

between the optimal value of output S(0) and the tax distorted value of output S(wt):

(68)   C(wt) ≡ S(0) − S(wt)

where S(w) is now defined by (61) above.  Differentiating (68) with respect to w and evaluating

w at the period t tax distortion rate wt leads to the following period t marginal cost of the system

of capital taxation:

(69)      MC(wt) ≡ C′(wt)

                                                
13 See Diewert’s (1976; 118) quadratic approximation lemma.
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                         = − S′(wt)                                               using (68)

                         = − wt Pt K′(wt)                                      using (64)

(70)                   = − wt Pt [  2  t(pt, Kt, Ft)/ K2]−1 Pt        using (64).

Thus, (70) defines the marginal cost of increasing the period t distortion wedge wt by a small

amount.  We turn now to the problem of defining the corresponding marginal benefit function for

our new model.

Recall equation (24) above, which expressed the total revenue T from all sources of capital

taxation.  The counterpart is now:

(71)   Tt = wt Pt Kt.

We replace the period t distortion rate wt by a general distortion rate w and let K(w) be the

solution to (59) when wt is replaced by w.  Making these substitutions into (71) leads to the

following definition for the period t total tax revenues as a function of the distortion rate w:

(72)   T(w) ≡ w Pt K(w).

We can now obtain the marginal increase in capital tax revenues by differentiating T(w) defined

by (72) with respect to w and evaluating the resulting derivative at the observed period t

distortion rate wt.  Thus, define the period t marginal benefit of an increase in the rate of capital

taxation as:

(73)   MB(wt) ≡ T′(wt)

                     = Pt K(wt) + wt Pt K′(wt)                                            differentiating (72)

(74)          = Pt K(wt) + wt Pt [  2  t(pt, Kt, Ft)/ K2]−1 Pt              using (64).

Thus, given an econometric estimate for the period t cash flow function, t, the right hand side of

(74) can be evaluated using observable data.  The first term on the right hand side of (74) will be

positive and the second term will be negative.  If there is a high degree of substitutability of

capital for other inputs and outputs in period t, then the second term can make the overall

marginal benefits of increasing capital taxes negative.  In this case, the government will achieve

both increased productive efficiency and higher tax revenues by reducing capital tax distortions.

The marginal excess burden of increasing the period t capital tax distortion rate wt by a small

amount is simply the ratio of the marginal cost MC(wt) defined by (70) above divided by the

marginal tax revenue MB(wt) defined by (74) above:

(75)    MEB(wt) ≡ MC(wt) / MB(wt) = − wt K′(wt) / {Pt K(wt) + wt Pt K′(wt)}.
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Thus, with the use of duality theory, it proved to be quite straightforward to generalise the very

simple one output model of the previous section to an open economy with many outputs and

inputs.  However, the model presented in this section still only had a single reproducible capital

input.  Before we deal with the case of many capital inputs, we rework the analysis presented in

this section using the pure rents profit function  t (see (58) above) in place of the cash flow

profit function t, since we used the former function in our econometric work.

5.  Excess Burdens in a Single Capital Model Using Pure Rents Profit Functions

Recall that the period t pure rents profit function  t(pt, (ut + wt)Pt, Ft) was defined by (58)

above.  Recall also the capital demand function K(w) that was the solution to the first order

condition (59), where wt was replaced by a general distortion wedge w.  It can be shown14 that

the capital demand function K(w) can be obtained directly from the pure rents profit function by

differentiating  t(pt, (ut + w)Pt, F t) with respect to the tax distorted user cost, which we denote

by V ≡ (ut + w)Pt:

(76)   K(w) = −   t(pt, (ut + w)Pt, Ft)/ V.

We can differentiate K(w) with respect to w and evaluate the resulting derivative at w = wt.  We

obtain the following counterpart to our old formula (60) in the previous section:

(77)   K′(wt) = − [  2  t(pt, (ut + w)Pt, Ft)/ V2] Pt.

Recall our old definition (61) of the surplus function S(w) using the cash flow profit function t.

Using the pure rents profit function  t, we can redefine S(w) as follows:

(78)     S(w) ≡  t(pt, (ut + w)Pt, Ft) + w Pt K(w).

Differentiating S(w) with respect to w yields the following equations:

(79) S′(w) = [∂Πt(pt, (ut + w)Pt, Ft)/ V] Pt + Pt K(w) + w Pt K′(w)

                      = − K(w) Pt + Pt K(w) + w Pt K′(w)                                          using (76)

                      = w Pt K′(w).

Evaluating (79) at w = 0 and w = wt leads to the following equalities:

(80) S′(0) = 0;

                                                
14 This is known as Hotelling’s Lemma; see Diewert (1993; 166).
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(81) S′(wt) = wt Pt K′(wt)

(82)                =  −wt Pt [  2  t(pt, (ut + w)Pt, Ft)/ V2] Pt.                    using (77).

Using (80) and (82) and making use of the quadratic approximation (65) again to approximate

S(0), we have the following quadratic approximation for S(0) − S(wt):

(83) S(0) − S(wt) ≈ (1/2) (wt)2 Pt [  2 t(pt, (ut + w)Pt, Ft)/ V2]  Pt.

Recall our earlier definition of the loss of surplus due to the distortion wedge w* as a fraction of

undistorted GDP, [S(0) − S(w*)]/Y(0), and the second order approximation to this loss, A(w*)

defined by (14).  As in the previous section, we will again express the loss as a fraction of the tax

distorted level of GDP, which we again denote by Y(wt) for period t.  Thus, using (83), we obtain

the following counterpart to (67) in the previous section; i.e., our new second order

approximation to the loss of output in period t is:

(84) A(wt) ≡  (1/2) (wt)2 Pt [  2  t(pt, (ut + w)Pt, Ft)/ V2]  Pt / Y(wt).

Given an econometrically estimated pure rents function  t, we can readily calculate A(wt)

defined by (84).

We turn now to the problem of generalising our old marginal cost function MC(w*) defined

earlier by (69).  As in the previous section, we define the cost of the system of capital taxation

function C(w) as the difference between the optimal value of output S(0) and the tax distorted

value of output S(wt):

(85) C(wt) ≡ S(0) − S(wt)

where S(w) is now defined by (78) above.  Differentiating (85) with respect to w and evaluating

w at the period t tax distortion rate wt leads to the following period t marginal cost of the system

of capital taxation:

(86) MC(wt) ≡ C′(wt)

                         = − S′(wt)                                                       using (85)

(87)                   = − wt Pt K′(wt)                                             using (81)

(88)                   =  wt Pt [  2  t(pt, (ut + w)Pt, Ft)/ V2] Pt        using (82).

Thus, (86) defines the marginal cost of increasing the period t distortion wedge wt by a small

amount and (87) and (88) are formulae which can be used to evaluate this marginal cost.  We

turn now to the problem of defining the corresponding marginal benefit function for our new

model.
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Recall equations (24) and (71) above, which expressed the total revenue T from all sources of

capital taxation in terms the distortion wedge W = wP.  We can rewrite (24) for period t total

capital tax revenue Tt as a function of the period t distortion wedge wt as follows:

(89) Tt =  wt Pt Kt (wt).

We replace the period t distortion rate wt by a general distortion rate w and let K(w) be defined

by (76).  Making these substitutions into (89) leads to the following definition for the period t

total tax revenues as a function of the distortion rate w:

(90) T(w) ≡ w Pt K(w).

Now differentiate T(w) defined by (90) with respect to w and evaluate the resulting derivative at

the observed period t distortion rate wt.  This defines the period t marginal benefit of an increase

in the rate of capital taxation as:

(91) MB(wt) ≡ T′(wt)

(92)                  = Pt K(wt) + wt Pt K′(wt)         differentiating (90)

(93)                  = Pt K(wt) − wt Pt [  2  2(pt, (ut + w)Pt, Ft)/ V2] Pt        using (77).

Thus, given an econometric estimate for the period t cash flow function,  t, the right hand side

of (93) can be evaluated using observable data.  As was the case with our earlier formulae (74),

the first term on the right hand side of (93) will be positive and the second term will be negative.

If there is a high degree of substitutability of capital for other inputs and outputs in period t, then

the second term can make the overall marginal benefits of increasing capital taxes negative.  In

this case, the government will achieve both increased productive efficiency and higher tax

revenues by reducing capital tax distortions.

The marginal excess burden of increasing the period t capital tax distortion rate wt by a small

amount is simply the ratio of the marginal cost MC(wt) defined by (87) above divided by the

marginal tax revenue MB(wt) defined by (92) above:

(94) MEB(wt) ≡ MC(wt) / MB(wt) = − wt K′(wt) / {Pt K(wt) + wt Pt K′(wt)}.

Note that our new formula for the MEB(wt), (94), coincides with our formula for the marginal

excess burden of an increase in the wedge wt in the previous section, (75).  However, in this

section, we obtain an estimate of the capital demand derivative K′(wt) using equation (77), which

involves the second order partial derivative of the period t pure profits function  t with respect

to the tax distorted user cost V ≡ (u + w)P, whereas in the previous section, we obtained an
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estimate of the capital demand derivative K′(wt) using equation (60), which involved the second

order partial derivative of the period t cash flow function t with respect to capital K.

The profit function models presented in this section and the previous section had only a single

reproducible capital input.  In the following section, we relax this restriction.

6. A Multiple Capital Stock Model

In this section, we assume that K ≡ (K1, K2, K3) is now a three dimensional vector of reproducible

capital stocks rather than being the scalar capital stock assumed in the previous sections of this

paper.  We now adapt the analysis presented in the previous section to this multiple capital stock

case.

The period t cash flow profit function t can still be defined by (57) above but we now interpret

K as a vector.  Recall that the period t pure rents profit function  t(pt, (ut + wt)Pt, Ft) was defined

by (58) above.  This same definition is still applicable with K being interpreted as a vector but

now (ut + wt)Pt ≡ [(u1
t + w1

t)P1
t,(u2

t + w2
t)P2

t, (u3
t + w3

t)P3
t] is interpreted as a vector of period t tax

distorted user costs for the reproducible capital stocks.  We define the period t vector of stock

prices for the reproducible capital stock components as Pt ≡ [P1
t, P2

t, P3
t].  The vector of period t

undistorted (deflated) user costs of capital is defined as ut ≡ [u1
t, u2

t, u3
t] and the vector of

deflated period t distortion terms is defined as wt ≡ [w1
t, w2

t, w3
t].  Each distortion term is defined

as in equations (54)-(56) in section 3 above.15 The undistorted (deflated) user costs of capital, un,

are defined as in section 3; ie we have:

(95) un ≡ R − n + n (1 + n) ;                                          n = 1,2,3.

It can be shown that the vector of capital demand functions K(w) ≡ [K1(w1, w2, w3), K2(w1, w2,

w3), K3(w1, w2, w3)]  can be obtained directly from the pure rents profit function by differentiating
 t(pt, (ut + w)Pt, Ft) with respect to the components of the tax distorted user costs, which we

denote by the vector V ≡ (ut + w)Pt ≡ [(u1
t + w1)P1

t, (u2
t + w2)P2

t, [(u3
t + w3)P3

t]:

(96)  K(w) = − V
 t(pt, (ut + w)Pt, Ft)

where V
 t(pt, (ut + w)Pt, Ft) = V

 t(pt, V, Ft) denotes the vector of first order partial derivatives

of  t(pt, V, Ft) with respect to the components of V; ie we have

(97) V
 t(pt, V, Ft) ≡ [  t(pt, V, Ft)/ V1, 

 t(pt, V, Ft)/ V2, 
 t(pt, V, Ft)/ V3] .

                                                
15 Note that we have changed our notation for the deflated wedges.



MEB of Capital Taxation in Canada

DIEWERT AND LAWRENCE Page 32

We can differentiate the vector K(w) defined by (96) with respect to the components of w and

evaluate the resulting three by three matrix of derivatives at w = wt.  We obtain the following

counterpart to our old formula (77) in the previous section:

(98)  w K(wt) = − [  2
VV  t(pt, (ut + w)Pt, Ft)] Diag(Pt )

where  2
VV  t denotes the three by three matrix of second order partial derivatives of  t with

respect to the three user costs and Diag(Pt) is a three by three diagonal matrix with the elements

of the three dimensional vector of period t capital stock prices, Pt ≡ [P1
t, P2

t, P3
t], running down

the main diagonal.

Recall our old definition (78) of the surplus function S(w).  We can redefine the surplus function

S(w) using the cash flow profit function  t as follows:

(99) S(w) ≡  t(pt, (ut + w)Pt, Ft) + � =
3

1n wn Pn
t Kn(w).

Differentiating S(w) with respect to the components of w yields the following equations:

(100) S(w)/ wn = [  t(pt, (ut + w)Pt, Ft)/ Vn] Pn
t + Pn

t Kn(w)

                                     + � =
3

1j wj Pj
t Kj(w)/ wn

                              = − Kn(w) Pn
t + Pn

t Kn(w) + � =
3

1j wj Pj
t Kj(w)/ wn        using (96)

                              = � =
3

1j wj Pj
t Kj(w)/ wn                                                  for n = 1,2,3.

Evaluating (100) at w = 03 and w = wt leads to the following equalities:

(101) S(03)/ wn = 0                                                                                   for n = 1,2,3;

(102) S(wt)/ wn = � =
3

1j wj
t Pj

t Kj(w
t)/ wn                                             for n = 1,2,3

(103)                   =  − � =
3

1j wj
t Pj

t [  2  t(pt, (ut + wt)Pt, Ft)/ Vj Vn] Pn
t.    using (98).

Using (101) and (103) and making use of Diewert’s (1976; 118) quadratic approximation lemma,

we have the following quadratic approximation for S(03) − S(wt):

(104) S(03) − S(wt) ≈ (1/2) � =
3

1j � =
3

1n wj
t Pj

t [  2  t(pt, (ut + wt)Pt, Ft)/ Vj Vn]wn
t Pn

t .

As in the previous section, we will again express the loss (104) as a fraction of the tax distorted

level of GDP, which we again denote by Y(wt) for period t.  Thus, using (104), we obtain the
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following counterpart to (84) in the previous section; ie our new second order approximation to

the loss of output in period t is16:

(105) A(wt) ≡ (1/2) � =
3

1j � =
3

1n wj
t Pj

t [  2Πt(pt, (ut + wt)Pt, Ft)/ Vj Vn] wn
t Pn

t / Y(wt).

Given an econometrically estimated pure rents function Πt, we can readily calculate A(wt)

defined by (105).

We turn now to the problem of defining the marginal cost function.  As in the previous section,

we define the cost of the system of capital taxation tax function C(w) as the difference between

the optimal value of output S(03) and the tax distorted value of output S(wt):

(106) C(wt) ≡ S(03) − S(wt)

where S(w) is now defined by (99) above.  Differentiating (106) with respect to the components

of w and evaluating w at the period t tax distortion vector wt leads to the following period t

marginal costs with respect to a small increase in the nth deflated distortion wedge wn:

(107) MCn(w
t) ≡ C(wt)/ wn                                                                   for n = 1,2,3

                          = − S(wt)/ wn                                                                 using (106)

(108)                  = − � =
3

1j wj
t Pj

t ∂Kj(w
t)/ wn                                         using (102)

(109)                  = � =
3

1j wj
t Pj

t [  2  t(pt, (ut + wt)Pt, Ft)/ Vj Vn] Pn
t      using (103).

Thus, (107) defines the marginal cost of increasing the period t distortion wedge for capital input

n, wn
t, by a small amount, and (108) and (109) are formulae which can be used to evaluate this

marginal cost.  However, now we encounter a difference in the multiple capital stock model of

this section compared with the single capital stock model in the previous section.  In the previous

sections, we did not have to consider in detail the effects of changes in each tax policy

parameter; all we had to know is whether the change in tax policy increased or decreased the

single deflated wedge.  Now we have to consider changes in each tax parameter separately.  The

changes in tax policy that we will consider in section 8 are:

• An increase in the business income tax rate *;

• An increase in the rate of property tax τPNR or indirect sales taxation τCNR (an increase in

either of these tax rates has the same effect); or

                                                
16 Since the pure rents profit function ∏t must be a convex function in its price arguments, the
matrix of second order partial derivatives in (105) must be positive semidefinite.  This means
that the approximate loss defined by (105) must be nonnegative.
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• An increase in the rate of indirect sales taxation on purchases of machinery and equipment,

τCME.

To indicate how we can work out the marginal cost of each type of tax increase, we show how to

do this for the first case above, an increase in the rate of business income taxation.  Recall

definitions (54) to (56) which defined each deflated wedge wn as a function of all tax parameters.

Now regard each wn as a function of the business income tax rate,τ*; ie we have:

(110) wn( *) = gn( *)                                                                             for n = 1,2,3.

Now we define the cost of the business income tax function C( *) as the difference between the

optimal value of output S(03) and the tax distorted value of output S(wt), but where the wedges

wn
t are regarded as functions of *:

(111) C( *) ≡ S(03) − S[g1( *),g2( *),g3( *)].

Now differentiate (111) with respect to * and evaluate the resulting derivatives at the observed

period t tax rate t.  Using (111) leads to the following period t marginal cost of an increase in

the business income tax rate:

(112) MC( t) ≡ C( t)/

                        = − � =
3

1n [ S(wt)/ wn] gn(
t)/                                       using (110)

(113)               = − � =
3

1n � =
3

1j wj
t Pj

t [ Kj(w
t)/ wn] gn(

t)/                using (102).

Equations (109) can be substituted into (113) in order to obtain a formula for MC( t) that can be

evaluated empirically, given an econometrically estimated pure rents function Πt.

We turn now to the problem of defining the corresponding marginal benefit function for our new

model.  We continue to focus on changes in the business income tax rate.  The treatment of

changes in other tax parameters is similar.

Recall equation (90) above, which expressed the total revenue T from all sources of capital

taxation in terms of the distortion wedge W = wP. The multiple capital stock generalisation of

equation (90) in the previous section is (114) below; ie we can write total capital tax revenue Tt

in period t as a function of the distortion wedges wt = [w1
t, w2

t, w3
t] as follows:

(114) Tt = � =
3

1n wn
t Pn

t Kn
t.

We replace the period t vector of distortion rate wt by a general vector of distortion rates w and

let K(w) be defined by (96).  Finally, we regard each wedge wn as a function of the business

income tax rate , as in equations (110) above.  Making these substitutions into (114) leads to the
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following definition for the period t total tax revenues as a function of the business income tax

rate *:

(115) T( *) ≡ � =
3

1n wn( *) Pn
t Kn[w1( *),w2( *),w3( *)].

We can obtain the marginal increase in capital tax revenues by differentiating T( *) defined by

(115) with respect to * and evaluating the resulting derivative at the observed period t tax rate
t.  Thus, we define the period t marginal benefit of an increase in the business income tax rate

as:

(116) MB( t) ≡ T′( t)

             = � =
3

1n [ gn(
t)/∂τ] Pn

t Kn(w
t) + � =

3
1n wn

t Pn
t [ � =

3
1j Kn(w

t)/ wj] gj (
t)/

             =  � =
3

1n Kn(w
t)Pn

t gn(
t)/ ]

                            + � =
3

1n � =
3

1j wn
t Pn

t [  2  t(pt, (ut + wt)Pt, Ft)/ Vn Vj] gj(
t)/

where the last equality follows using (98).

Thus, given an econometric estimate for the period t cash flow function,  t, the right hand side

of (116) can be evaluated using observable data.  As was the case with our earlier formulae, (74)

and (93), the first term on the right hand side of (116) will be positive but we can no longer

guarantee that the second term will be negative.  If there is a high degree of substitutability of

capital for other inputs and outputs in period t, then as in the previous sections, the second term

can make the overall marginal benefits of increasing capital taxes negative.  In this case, the

government will achieve both increased productive efficiency and higher tax revenues by

reducing capital tax distortions.

The marginal excess burden of increasing the period t business income tax rate t by a small

amount is simply the ratio of the marginal cost MC( t) defined by (113) above divided by the

marginal tax revenue MB( t) defined by (116) above:

(117) MEB( t) ≡ MC( t) / MB( t).

The calculations of marginal excess burdens for the other tax parameters is similar.

We turn now to our econometric model.
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7. The Producer Model

As we saw in the previous section, the key determinants of the size of the deadweight loss or loss

of efficiency in the economy due to the taxation of capital are the size of the capital tax distortion

wedges and the magnitudes of various elasticities of demand and supply for private sector

producers. This section and the next one will focus on the empirical estimation of these producer

elasticities.

In this paper, we use the data pertaining to the Canadian economy that is developed in Appendix

A below to estimate a system of private producer supply and demand equations. Flexible

functional form techniques are used: ie the functional form we use to model the technology does

not impose unwarranted a priori restrictions on elasticities of substitution between the outputs

and inputs. In the present section, we lay out a preliminary version of our model.

In the next section, we note that there is a potential problem with our preliminary model: the

elasticities that it generates may trend significantly over the sample period in a manner that is not

warranted.  Given the importance of determining accurate elasticities in order to calculate excess

burdens, we discuss how this problem can be remedied.

In the data appendix, we describe our disaggregated database covering the private production

sector of the Canadian economy for the period 1974 to 1998. Our  disaggregated producer model

database contains price and quantity information for a total of 39 inputs and outputs. These were

aggregated to 8 commodities to permit econometric estimation.

When the number of commodities in an applied general equilibrium model is large, it becomes

difficult or impossible to estimate flexible functional forms. When there are N+1 commodities

and T observations on prices and quantities for each commodity, there are (N+1)T degrees of

freedom available for econometric estimation and this number is an upper bound to the number

of unknown parameters characterising technology that can be estimated. A bare bones basic

flexible functional form for a production function (or the dual cost or profit functions) in the

constant returns to scale case has N(N+1)/2 unknown parameters. Hence, as soon as N (the

number of commodities less one) is equal to or greater than 2T, it becomes impossible to

estimate a flexible functional form using time series data.

Given that we could not accurately estimate a flexible producer model with all 39 commodities

in our database, in this preliminary work, we aggregated the 39 commodities to obtain the
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following 8 commodities: (1) consumption plus government purchases of intermediate inputs

plus investment; (2) exports; (3) imports; (4) labour input; (5) nonresidential stocks; (6) stocks of

machinery and equipment; (7) inventory stocks and (8) inputs of land and other fixed factors.

Flexibility is a desirable property for a functional form since an inflexible functional form will

restrict elasticities of substitution between commodities in some arbitrary a priori fashion. A way

of dealing with this inflexibility problem when the number of commodities is large relative to the

number of observations was suggested by Diewert and Wales (1988) in the consumer theory

context: instead of estimating a general N by N symmetric substitution matrix A of full rank, they

restricted A to be a symmetric substitution matrix of rank J where J is smaller than N.  Diewert

and Wales (1988) termed functional forms of this type semiflexible. In the present section, we

shall adapt their technique to the producer context.

The technology of the private production sector could be described by a production, cost or

variable profit function.  In this study, we will describe technology by means of a pure profits

variable profit function of the type defined in the previous section.17

Recall the definition of the period t cash flow profit function t, (57) above, which we rewrite as

(118) below:

(118)  t(pt, Kt, Ft) ≡ max y {pt y : (y, Kt, Ft )  St }

where (p1
t,…, p11

t) ≡ pt is the vector of positive prices that producers face in period t for the 4

noncapital variable inputs and outputs in our model and where pt y denotes the inner product of

the of the vectors pt and y. The corresponding variable outputs and inputs produced and used

during period t are denoted by the quantity vector yt ≡ (y1
t,…y4

t). Recall that if commodity m is an

input, then ym
t has a negative sign. The private business sector of the economy utilises the

beginning of period t capital stock vector Kt ≡ (K1
t, K2

t, K3
t) and the fixed factor input Ft.  The

period t set of feasible net output vectors y, conditional on a beginning of the period capital stock

Kt and fixed factor input Ft is denoted by the set St.  In words, t(pt, Kt, Ft) is the maximum value

added less the value of labour inputs that the private sector can produce given that producers face

the prices pt for these variable outputs and inputs and given that producers have the vector of

                                                
17 In this approach, we treat the user costs of our three types of reproducible capital as exogenous variables and the
corresponding capital input demands are treated as endogenous variables.  Thus, in our present econometric
approach, the demand for capital is treated in a symmetric manner with the demand for labour.  In contrast, in our
earlier study of the New Zealand economy, Diewert and Lawrence (1994), we treated the stocks of reproducible
capital as exogenous variables and the corresponding rental prices as endogenous variables.  We feel that our present
approach is more appropriate in the context of determining the excess burdens of capital taxation, a topic that our
earlier study did not address.
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fixed stocks of reproducible capital Kt and the quantity Ft of non-reproducible capital available to

them at the beginning of period t.

As in the previous sections, we use the period t cash flow profit function t defined by (118)

above in order to define the period t pure rent profit function  t as follows:

(119)   t(pt, (ut + wt)Pt, Ft) ≡ max K {  t(pt, Kt, Ft) − � =
3

1n (un
t + wn

t)Pn
t Kn}

where the price of one unit of the ith type of reproducible capital stock is Pi
t in period t and ut ≡

(u1
t, u2, u3

t) is the vector of period t (deflated) undistorted user costs of capital defined by (95) in

the previous section and wt ≡ (w1
t, w2

t, w3
t) is the period t vector of (deflated) total tax distortion

wedges defined by (54)-(56) in section 3.

In our econometric work, we hold the input of land and other fixed factors that are used by the

Canadian private production sector fixed throughout our sample period.  Hence, in what follows,

we will omit Ft from  t(pt, (ut + wt)Pt, Ft).  We will also absorb the three user costs of capital, (ut

+ wt)Pt, into the pt vector; ie we define p5
t ≡ (u1

t + w1
t)P1

t, p6
t ≡ (u2

t + w2
t)P2

t and p7
t ≡ (u3

t + w3
t)P3

t.

Finally, the notation  t(p) indicates that the pure rents profit function depends on the period t as

well as on the price vector p ≡ (p1, p2,…,p7).  We will rewrite this dependence as (p, t).

 Once a functional form for  has been chosen, estimating equations can be obtained by

differentiating the profit function with respect to the prices pm, see Diewert (1974a; 137 and 140),

(1993; 166 and 168):

(120) ym(p, t) ≡ (p, t)/ pm ;                    m = 1,…,7.

 The functional form for the pure rents function  that we chose was a variant of the normalised

quadratic functional form,18 since this functional form allows us to impose the appropriate

curvature conditions without destroying its flexibility properties.  Using matrix notation, the

function can be defined as follows:

 (121) (p, t) ≡ p b + p d(t − 1) + (1/2) p Ap / p g ;                 t = 1, 2,…, 25

 where b ≡ [b1,…,b7] and d ≡ [d1,… , d7] are parameter vectors to be estimated and A ≡ [amn] is a 7

by 7 symmetric matrix of parameters to be estimated.  The vector g ≡ [g1, …, g7] is a vector of

exogenously determined parameters.  The components of g were chosen to be the absolute values

of the sample means of the observed net output vectors yt ≡ [y1
t,…,y7

t] normalised so that:

(122) p*•g = 1

                                                
 18 See Diewert and Wales (1987) (1992) and Lawrence (1988) (1989) (1990).
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where p* was a fixed vector.19 The variable t which appears in (121) is a scalar time variable

which serves as a proxy for technological change.

 In order for (p,t) to be a well behaved profit function which is a convex function in its price

variables p, we set A to equal the following product of two matrices, U and its transpose UT :20

(123) A = UUT

 where U is a lower triangular matrix and UT is an upper triangular matrix which satisfies the

following restrictions21:

 (124) UTp* = 07

 where 07 is a vector of zeros of dimension 7.

 Differentiating the profit function (121) with respect to the components of p leads to the

following system of 7 estimating equations:

 (125) yt = b + d(t − 1) + Apt / pt•g − (1/2) pt•Apt g / (pt•g)2 + et ;         t = 1,2,…,25

 where et ≡ [e1
t,…,e7

t] is a vector of independently distributed normal residuals where each of the

residuals em
t has mean 0 and variance m

2 for m = 1,…,7 and t = 1,…,25.

 The vector of parameters d essentially adds a linear trend to each estimating equation in order to

allow for the effects of technical progress in the Canadian economy over our sample period.

 Unfortunately, (123) and (125) did not represent our final model because there is a problem with

the profit function defined by (121).  The problem is that the elasticities of demand and supply

derived from the profit function defined by (121) can have substantial trends built into them.

This is a problem in the present context due to the importance of elasticities in determining

marginal excess burdens.  We deal with this problem in the following section.

 

8. The Problem of Trending Elasticities

 If we differentiate the pure rents profit function defined by (121) above with respect to the mth

component of the price vector p, we obtain the following equation that describes the net supply

of commodity m as a function of the price vector p in period t:

                                                
19 We chose p* to be a vector of ones.
 20 See Diewert and Wales (1987; 52-53) for further explanation.
21 Restrictions like (7) are required in order to identify the components of the b vector. Alternatively, restrictions (7)
could be dropped but then the b vector would have to be dropped as well.
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(128) ym(p,t) = bm + dm (t − 1) +  ∑j=1
7 amj (pj / p g) − (1/2) gm p•Ap / (p•g)2.

 Now differentiate (128) with respect to pn, the nth component of the price vector p:

(129) ym(p,t)/ pn = amn / p g − ∑j=1
7 amj pj gn / (p g)2 − ∑j=1

7 anj pj gm / (p g)2

                                                 + gm gn p•Ap / (p g)3 .

 Now turn (129) into the cross elasticity of net supply of commodity m with respect to a change in

the price of commodity n, emn:

 (130) emn (p,t) ≡ [pn / ym] ym(p,t)/ pn

                       = amn (pn / ym p•g) − ∑j=1
7 amj pj gn pn / ym (p g)2

                               − ∑j=1
7 anj pj gm pn / ym (p g)2  + gm gn p•Ap pn / ym (p g)3 .

 The last three terms on the right hand side of (130) will be zero when p = p* and in our empirical

work, these last three terms were typically small in magnitude.  Thus, the key determinant of the

magnitude of the elasticity emn will typically be the first term on the right hand side of (130),

namely, amn (pn / ym p g).  Of course, the parameter amn will be constant over time but the other

terms, pn (the price of commodity n), ym (the net output of commodity m) and p g ≡ ∑j=1
7 pn gn (a

fixed basket price index of all 7 variable input and output prices) can all have substantial trends

over our sample period.  Thus, our chosen functional form has built in these possible trends in

elasticities.

 A solution to this problem is readily at hand but at a cost in terms of using up degrees of

freedom.  We have followed the example of most applied production function researchers and

allowed technical progress to affect the constant terms in the system of net supply functions

(128) but we have left the substitution matrix A unchanged over time.  To solve the problem of

trending elasticities, all we have to do is allow A to change over time as well.  Thus, in our

empirical work, we set the A matrix in (128) above equal to weighted average of a matrix B

(which characterises substitution possibilities in 1974) and a matrix C (which characterises

substitution possibilities in 1998); ie, we define A as follows in terms of B and C and the time

variable t:

 (131) At = (1 − [(t −1)/24]) B + [(t −1)/24] C ;              t = 1,2,…,25.

 Essentially, we now let technical progress affect not only the constant terms in (121) but we also

allow it to affect substitution possibilities as well.  Another way of viewing our new functional

form is that we allow the functional form to be flexible at two points (the first sample point and

the last) instead of the usual one point.
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 In order to impose the correct curvature conditions (globally), we need to set the 7 by 7

symmetric matrices B and C equal to the product of UUT and VVT respectively, where U and V

are lower triangular matrices; ie we set:

 (132) B = UUT ;    C = VVT ;                                          U and V lower triangular.

 We also impose the following normalisations on the matrices U and V:

 (133) UTp* = 07 ;         V
Tp* = 07.

 Now we are ready to describe our empirical results.

 

 9.  Empirical Results for the Production Model

 

 The unknown parameters which appear in (125) (where A is replaced by At defined by (131)

above) can in theory be estimated using nonlinear systems maximum likelihood estimation

commands in econometric packages such as TSP or SHAZAM (see White (1978)).  However,

due to the very large number of parameters in our model, these econometric programs failed to

converge.  Thus, we decided to run all 7 of our estimating equations in (125) as one big nonlinear

regression with only one variance parameter 2 . This approach proved to be quite successful

using SHAZAM. Once we obtained satisfactory parameter estimates using this one big

regression approach, we calculated the inverse of the square root of the squared residuals for

each equation and then multiplied both dependent and independent variables for that equation by

this variance stabilising factor and then we performed a second single big regression using these

transformed dependent and independent variables. This two stage procedure controls for

equation by equation variance heteroskedasticity in the original regression model.

 It should be noted that equations (125) are linear in the unknown vectors of parameters, b and d,

and linear in the unknown components of the matrices of parameters, B and C.  However, when

we impose the correct curvature conditions on our estimated profit function by setting B = UUT

and C = VVT, the resulting estimating equations (125) turn out to be nonlinear in the components

of the matrices U and V.  When we attempted to estimate the parameters in b, d, U and V by

running one big regression, we found that it was difficult to achieve convergence if we attempted

to estimate all of the parameters in an initial regression.  Thus, we used the following strategy:

(i) the parameters in the vectors b, and d were estimated in an initial linear regression (with U

and V being set equal to zero matrices initially); (ii) we ran nonlinear regressions, using

equations (125), introducing one column of the U matrix and one column of the V matrix into our
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nonlinear regression; (iii) the final parameter values from stage (ii) above were used as starting

values in a new nonlinear regression where an additional column of U and V were added with

starting values close to zero; (iv) step (iii) was repeated until all columns of the U and V matrices

were entered into the big nonlinear regression, with at least one nonzero component.  This

algorithm lead us to introduce 5 columns of the U matrix and 5 columns of the V matrix.22 In

view of the restrictions (133), this means that we should have 20 umn parameters and 20 vmn

parameters in our final regression.  We also have 14 bm and dm parameters or an additional 14

parameters to estimate.  This means we have a total of 54 parameters to estimate with 7 times 25

or 175 degrees of freedom.  This is a large number of parameters for the available degrees of

freedom but as we shall see, most of them appear to be necessary to describe substitution

elasticities for the Candadian economy over our sample time period.

 Table 6: Estimated Coefficients for the Producer Model

 Variable  Estimate  St. Error  t-statistic  Variable  Estimate  St. Error  t-statistic

b1 124.820 1.958 63.767 u22 -3.648 1.669 -2.186
b2 34.037 1.193 28.530 v32 -13.216 1.581 -8.358
b3 -37.804 1.705 -22.175 u32 8.460 1.382 6.122
b4 -83.097 1.164 -71.363 v42 2.776 0.775 3.584
b5 -15.242 0.660 -23.099 u42 -7.975 1.095 -7.286
b6 -10.829 0.571 -18.955 v52 -1.916 0.754 -2.539
b7 -2.540 0.249 -10.193 u52 0.085 1.134 0.075
d1 7.008 0.463 15.129 v62 -0.887 0.793 -1.119
d2 2.088 0.190 10.965 u62 1.953 0.909 2.150
d3 -2.513 0.285 -8.820 v33 -4.822 1.055 -4.571
d4 -3.666 0.287 -12.764 u33 -1.261 1.517 -0.831
d5 -1.184 0.106 -11.199 v43 6.680 0.865 7.721
d6 -0.806 0.125 -6.435 u43 3.041 1.308 2.325
d7 0.010 0.034 0.301 v53 0.947 0.909 1.042
v11 23.267 2.496 9.323 u53 -2.330 0.799 -2.916
u11 14.383 1.745 8.243 v63 -2.560 1.064 -2.407
v21 -10.447 0.958 -10.899 u63 0.042 1.074 0.039
u21 8.355 1.142 7.314 v44 -0.078 1.566 -0.050
v31 -5.441 1.819 -2.991 u44 -0.791 1.956 -0.404
u31 -8.817 1.600 -5.512 v54 -3.804 0.855 -4.447
v41 -9.405 0.863 -10.892 u54 1.306 1.206 1.082
u41 -12.194 1.157 -10.544 v64 4.203 1.188 3.538
v51 -0.503 0.946 -0.532 u64 -0.522 1.221 -0.427
u51 -3.590 0.815 -4.403 v55 -0.170 2.441 -0.070
v61 1.979 0.848 2.333 u55 -0.279 1.204 -0.231
u61 1.548 0.606 2.556 v65 0.179 2.630 0.068
v22 13.209 1.258 10.497 u65 0.546 1.105 0.494

 

                                                
22  Adding an extra U or V column led to a negligible increase in the log likelihood after 4 columns were added so
we stopped at 5 columns for the U and V matrices.
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 The one big nonlinear regression with 54 parameters generated the following 7 variance

weighting factors (the inverses of the square roots of the sum of the squared residuals for each of

our 14 estimating equations): 0.04474143; 0.09917493; 0.06528360; 0.1064402; 0.1990786;

0.2345888; 0.5263991. The resulting parameter estiamtes are presented in Table 6.

 It should be noted that the elements in the last row of the lower triangular U matrix are defined in

terms of the other elements of the U matrix as follows:

 (134) u7,m ≡ − ∑j=1
6 ujm ;                                                          m = 1,…,5.

 Similarly, the elements in the last row of the lower triangular V matrix are defined in terms of the

other elements of the V matrix as follows:

 (135) v7,m ≡ − ∑j=1
6 vjm ;                                                          m = 1,…,5.

 Of the 40 price substitution coefficients umn and vmn, 26 had t statistics greater than two.

 Table 7: Own Price Elasticities of Net Supply for Canada

Year e11 e22 e33 e44 e55 e66 e77

1974 1.657 2.442 -3.991 -2.674 -1.319 -0.626 -0.668
1975 1.724 2.048 -3.825 -2.489 -1.221 -0.518 -1.104
1976 1.714 1.430 -2.854 -2.429 -0.990 -0.440 -1.163
1977 1.811 1.116 -2.696 -2.380 -0.833 -0.397 -0.848
1978 1.766 0.754 -2.340 -2.081 -0.673 -0.401 -0.559
1979 1.703 0.517 -1.974 -1.850 -0.564 -0.390 -0.436
1980 1.764 0.374 -1.708 -1.768 -0.549 -0.321 -0.456
1981 1.882 0.260 -1.466 -1.754 -0.540 -0.275 -0.553
1982 2.006 0.202 -1.270 -1.804 -0.468 -0.251 -0.528
1983 1.954 0.189 -1.056 -1.711 -0.372 -0.246 -0.520
1984 2.006 0.224 -1.012 -1.640 -0.321 -0.243 -0.480
1985 2.088 0.293 -0.992 -1.613 -0.278 -0.236 -0.421
1986 2.107 0.383 -0.982 -1.545 -0.251 -0.240 -0.374
1987 2.089 0.497 -0.931 -1.486 -0.240 -0.238 -0.354
1988 2.115 0.612 -0.903 -1.467 -0.265 -0.238 -0.349
1989 2.112 0.736 -0.891 -1.420 -0.307 -0.241 -0.369
1990 2.135 0.872 -0.928 -1.396 -0.338 -0.239 -0.344
1991 2.230 0.982 -0.944 -1.461 -0.335 -0.207 -0.273
1992 2.422 1.076 -1.032 -1.510 -0.311 -0.186 -0.184
1993 2.445 1.216 -1.134 -1.452 -0.309 -0.191 -0.143
1994 2.431 1.381 -1.258 -1.363 -0.346 -0.212 -0.153
1995 2.467 1.466 -1.302 -1.333 -0.392 -0.223 -0.218
1996 2.372 1.569 -1.278 -1.316 -0.425 -0.235 -0.287
1997 2.403 1.633 -1.309 -1.358 -0.463 -0.250 -0.280
1998 2.412 1.764 -1.421 -1.359 -0.493 -0.266 -0.274

Average 2.073 0.961 -1.580 -1.706 -0.504 -0.292 -0.454
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 Recall definition (130) above, which defined the cross elasticity of net supply of commodity m

with respect to a change in the price of commodity n, emn.  There are too many elasticities in the

full 7 by 7 matrix of elasticities for us to list them all but we do list the own price elasticities of

net supply emm in Table 7.

It can be seen that many of the elasticities are fairly large, especially near the beginning  of the

sample period.  This may be partially due to the rather large number of parameters in our model.

However, it is likely that the large elasticities are simply due to the fact that we are using a very

flexible functional form and we have disaggregated inputs and outputs to a greater degree than

many previous econometric studies.  What is very surprising to us is the generally low elasticities

we get for the three capital stock components: the average own elasticity of demand for

nonresidential structures averaged around −.5; the price elasticity of own demand for machinery

and equipment averaged only about −.3 and the price elasticity of own demand for inventory

stocks averaged only about −.45 (which is perhaps not surprising).

Consistent with economic theory23, we suspect that a more disaggregated model would yield

bigger (in magnitude) elasticities.  This is what we found in our studies of the New Zealand

economy; moving from a highly aggregated model to one that is relatively disaggregated has

increased the scope for substitution and, consequently, led to substantially larger elasticity

estimates. Thus, it is likely that further disaggregation would lead to even higher elasticities of

demand for capital and this would feed into higher estimates of deadweight losses and marginal

excess burdens of capital taxation.

Our observation that disaggregation tends to lead to larger estimate of elasticities of supply and

demand is one that has not been stressed in the literature a great deal.  However, given the

importance of elasticity information for a wide variety of policy purposes, we believe that the

point is an important one and deserves further research.24

We have now assembled all the necessary building blocks for the construction of marginal

excess burdens for capital taxation.  In the next section, we present our marginal excess burden

estimates.

                                                
 23 See Diewert (1974b).
24 One of the last serious discussions about the likely size of elasticities took place 50 years ago in the context of
trade elasticities by Orcutt (1950) who argued that elasticities of import demand and export supply were likely to be
larger than had been thought.  We found that in our work on the New Zealand economy, trade elasticities in a 15
commodity model dropped substantially when we aggregated our two export commodities into a single export
aggregate and when we aggregated our three import commodities into a single import aggregate.
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10.  Marginal Excess Burdens of Capital Taxation for Canada

As outlined in section 6  (see formula (105) above), we calculate a second order approximation

to the total loss of output that results from the taxation of capital due to both the personal and

business income tax, the property tax on structures and sales taxes on the purchases of durable

capital equipment. This second order approach is the average of two first order approximations:

one around the distorted equilibrium and one around the undistorted equilibrium.  These total

losses are reported as a fraction of business sector GDP in Table 8 and Figure 7 below.

Table 8:  Production Loss as a Proportion of Business Sector Output (percentages)

Year Loss Year Loss Year Loss

1974 1.441 1983 0.115 1992 0.163
1975 0.918 1984 0.103 1993 0.190
1976 0.650 1985 0.086 1994 0.245
1977 0.483 1986 0.073 1995 0.328
1978 0.378 1987 0.075 1996 0.420
1979 0.303 1988 0.090 1997 0.503
1980 0.266 1989 0.111 1998 0.530
1981 0.243 1990 0.125
1982 0.166 1991 0.140 Average 0.326

After starting from a relatively high proportion of around 1.4 per cent of GDP in 1974, the

production loss from capital taxation progressively declines to very low levels of less than 0.1

per cent of GDP in the period 1985-1988.  It then increases to finish at around 0.5 per cent of

GDP in 1998.  We know that these productive efficiency losses grow roughly proportionally to

the magnitude of elasticities and increase at a squared rate as the distortion wedges increase.

From Table 3, it can be seen that the wedges did not change all that much over the entire sample

period.  From Table 7, it can be seen that capital elasticities started out at relatively high levels in

1974, generally decreased until they hit their minimum magnitudes in the period 1985-1988 and

then these capital elasticities gradually increased again.  Thus the pattern of efficiency losses was

more or less driven by these fluctuations in capital elasticities rather than by large fluctuations in

the burden of capital taxation (i.e., by fluctuations in the wedge rates).
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Figure 7: Production Loss as a Proportion of Business Sector Output
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As noted in sections 2 and 6 (see formula (117) above), the marginal excess burden of a tax

parameter is the loss of output due to a marginal increase in the tax parameter divided by the

increase in total tax revenue due to the same marginal change in the tax parameter.  In Table 9

and Figure 8 below, we list the MEB for an increase in the business capital tax rate τ*, the MEB

for an increase in the property tax on structures τPNR (which is equal to the MEB for an increase

in the sales tax on structures and materials used on structures, τCNR) and the MEB for an increase

in the sales tax on machinery and equipment τCME.  In all cases, the increase in the tax rate

increased tax revenues.

In the case of an increase in the business capital tax rate τ* or an increase in the property tax rate

τPNR, for all years marginal efficiency declined so the resulting MEBs were positive as we would

expect.  However, in the case of an increase in the sales tax on machinery and equipment, we

found that from 1984 on, this marginal increase actually led to a tiny increase  in efficiency and

thus the resulting MEB’s are negative.  Thus, according to our model, a small increase in τCME

should lead to a small increase in both tax revenues and in economic efficiency from 1984 on.

Economic theory does not rule out this rather strange result but it is difficult to explain

intuitively.
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Table 9: Marginal Excess Burdens of Various Capital Taxes (percentages)

Year * PNR CME

1974 46.72 62.93 8.20
1975 31.39 39.49 5.29
1976 20.81 26.57 3.76
1977 14.79 20.24 2.79
1978 11.43 15.25 2.41
1979 8.87 11.26 2.19
1980 7.22 9.93 0.95
1981 5.94 8.65 0.32
1982 4.09 6.29 0.23
1983 3.00 4.55 0.18
1984 2.49 3.96 -0.10
1985 2.04 3.58 -0.51
1986 1.79 3.05 -0.49
1987 1.88 3.31 -1.00
1988 2.20 3.89 -1.46
1989 2.66 4.96 -2.35
1990 3.14 5.71 -2.54
1991 3.70 6.90 -3.27
1992 4.31 7.80 -3.36
1993 5.11 8.80 -3.59
1994 6.39 10.68 -4.05
1995 7.99 13.02 -4.27
1996 10.24 15.97 -4.68
1997 11.88 18.98 -4.97
1998 13.11 21.29 -5.46

Average 9.33 13.48 -0.63

From Table 9, we see that on average the Marginal Excess Burden of a small increase in the

sales tax rate on machinery and equipment is negligible.  For an increase in the business tax rate,

the average MEB  is about 9% while a small increase in the property tax rate yields on average

an MEB of about 13.5%.  These MEB’s are much larger for the beginning of our sample period

(about 47% for the business tax rate and about 63% for the property tax rate) and they seem to be

increasing at the end of our sample period (about 13% for the business tax rate and about 20%

for the property tax rate on structures).
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Figure 8: Capital Tax Marginal Excess Burdens
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11. Conclusions

We conclude with the following observations:

• It is a good idea to try and reduce capital tax distortions because they always involve a loss of

productive efficiency.  The loss of revenue has to be made up by taxing consumption or

labour but with enough tax instruments at its disposal, the tax authority can always design a

tax reform strategy that will increase overall welfare.

• Our estimates of the burdens of capital taxation are probably underestimated due to our use

of average tax rates.  In the real world, the complexities of the tax code lead to a much more

dispersed pattern of burdens but since the losses are approximately proportional to the

squares of tax distortions, averaging tax distortions will lead to an underestimate of the true

efficiency losses.

• Our estimates of the burdens of capital taxation are probably underestimated due to the

relatively high degree of aggregation in our model.  There is theoretical and empirical

evidence that elasticities of substitution increase in magnitude as we disaggregate over
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commodities.  These higher elasticity estimates would generate proportionately higher

estimates of total and marginal efficiency losses.

It may be useful to spell out in more detail why it is not efficient to have a system of capital

taxation that generates nonzero distortion wedges.  The basic intuition behind the above algebra

is explained rather well by Judd (1999):

“One general problem with this literature [on capital taxation] is the lack of economic intuition. … In this paper, we

ignore simple dynamic features such as the steady state behavior or long run elasticities, and instead put the zero

long run tax results on more economically appealing foundations.  To do this, we look to the commodity tax

literature.  Two results from that literature apply here; first, the optimality of uniform taxation with separable and

sufficiently symmetric utility, and, second the prohibition of intermediate good taxation derived in Diamond and

Mirrlees (1971).  Our methods generalize revious work and tie the results to the commodity tax literature, a change

which helps us understand why we often find that the average tax rate on capital income is zero in the optimal

policy.”  Kenneth L. Judd (1999; 2).

It is the second result from optimal tax theory, the prohibition against taxing intermediate inputs

in production, that explains our results.  Judd goes on to elaborate on this point:

“The second key principle we invoke is the Diamond-Mirrlees argument against the taxation of intermediate goods.

This is relevant here since capital goods, physical and human, are intermediate goods.  In fact, income taxation is

equivalent to sales taxation of intermediate goods.  This can be seen by noting, for example, that a 100 % sales tax

on capital equipment is equivalent to a 50 % tax on the income flow from capital equipment.  Since intermediate

good taxation will generally put an economy on the interior of its production possibilities frontier, capital income

taxation is likely to produce similar factor distortions, particularly if there are many capital goods.  Therefore, an

optimal tax structure would tax only final goods”.  Kenneth L. Judd (1999; 5-6).

Thus a reproducible capital stock component is both produced by the production sector (or

imported at a fixed world price and thus is produced by an integrated world production sector)

and used as an input in later periods; ie, it is an intertemporal intermediate input.  Hence in

order for an economy to achieve productive efficiency, it is necessary that all users and

producers of an intermediate commodity face the same prices.25  However, the system of

business income taxation causes users and producers of reproducible capital to face different

(intertemporal) prices.  Diewert (1988) made the same point as Judd:

“The other major thrust of this paper will be to indicate four major areas where our present tax system is inefficient.

Thus in the second, third and fourth sections below, we discuss three different types of deadweight loss induced by

our present system of business taxation.  In the second section, we discuss the losses due to the fact that the tax

                                                
25 See Diewert (1983b).
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system does not treat (nondurable) inputs and outputs in an even handed manner; that is, there are tariffs and sales

taxes that fall within the business sector (the manufacturer’s sales tax) as well as various output subsidies.  In the

third section, we discuss the losses due to the uneven tax treatment of durable inputs, such as land, inventories and

various types of capital.”  W. Erwin Diewert (1988; 2).

Thus Diewert noted that both intermediate input taxation and the taxation of reproducible capital

inputs led to a loss of productive efficiency.  The third type of deadweight loss that leads to a

global loss of productive efficiency is transfer pricing.  Diewert went on to characterize these

three types of loss of productive efficiency as follows:

“The above three types of deadweight loss lead to both a loss of productive efficiency as well as a loss of overall

efficiency defined earlier.  A tax system is consistent with productive efficiency if the allocation of resources across

the entire business sector is such that no output can be increased, holding other aggregate outputs and inputs fixed.”

W. Erwin Diewert (1988; 2-3).

“In summary: in order to achieve productive efficiency, it is necessary that all producers in the economy face the

same relative prices for their outputs and variable inputs.”  W. Erwin Diewert (1988; 6).

Tax systems that lead to a loss of productive efficiency can always be redesigned so that the

inefficiencies are eliminated, the same tax revenues are collected and the utilities of at least some

households increase, provided that the government has a sufficient number of tax instruments at

its disposal.
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