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1. Introduction 
 
Data Envelopment Analysis or (DEA) is the term used by Charnes and Cooper (1985) 
and their co-workers to denote an area of analysis which is called the nonparameteric 
approach to production theory1 or the measurement of the efficiency of production2 by 
economists. 
 
In section 2, we will provide an introduction to the theory of benchmarking and the 
measurement of relative efficiency of production units.  Section 3 develops measures of 
relative efficiency that use only quantity data.  These measures are particularly useful in 
the context of measuring the efficiency of government owned enterprises or units of the 
general government sector that deliver services to the public for free or for prices that do 
not reflect costs of production.  Efficiency measures that use only quantity data (and not 
price data) are also useful in the regulatory context.3  Section 4 develops measures of 
relative efficiency for production units in the same industry where reliable price and 
quantity data are available for the units in the sample.  Section 5 notes some relationships 
between the various efficiency measures developed in the previous two sections. 
 

                                                
1 See Hanoch and Rothschild (1972), Diewert (1981), Diewert and Parkan (1983) and Varian (1984).  It 
should be noted that in recent times, the term “nonparametric approach to production theory” has 
sometimes included index number methods for defining the relative efficiency of production units. 
2 See Farrell (1957), Afriat (1972), Färe and Lovell (1978), Färe, Grosskopf and Lovell (1985) and Coelli, 
Prasada Rao and Battese (1997).  The last two books provide a good overview of the subject. 
3 See Diewert (1981). 
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For applications of benchmarking to improve the efficiency of utilities or government 
enterprises, see Zeitsch, Lawrence and Salerian (1994), Lawrence (1995)(1998), Zeitsch 
and Lawrence (1996), Lawrence, Houghton and George (1997) and Swan, Lawrence and 
Zeitsch (2000).4  One very useful aspect of these benchmarking studies is that the most 
efficient production unit is identified by the technique so that the less efficient production 
units can then examine the production techniques used by the efficient unit in order to 
boost their own performance. 
  
Mendoza (1989) undertook an empirical comparison of 3 different methods for 
measuring productivity change in the context of time series data for Canada.   The 3 
different methods of comparison she considered were:  (i) a nonparametric or DEA 
method; (ii) traditional index number methods and (iii) an econometric method based on 
the estimation of a unit profit function.5  In section 6 we will compare the DEA and index 
number approaches to efficiency measurement using some aggregate Canadian data. 
 
Drawing on the empirical and theoretical results reviewed in the previous sections, in 
section 7 we compare the advantages and disadvantages of DEA methods for measuring 
the relative efficiency of production units with the more traditional index number and 
econometric methods. 
 
2. An Introduction to the Nonparametric Measurement of Efficiency 
 
The basic idea in the case of similar firms producing one output and using 2 inputs is due 
to Farrell (1957; 254).  Let there be K firms, denote the output of firm k by yk ≥ 0 and 
denote the amounts of inputs 1 and 2 used by firm k by x1

k ≥ 0 and x2
k ≥ 0 respectively, 

for  k = 1,2, . . ., K.  Calculate the input-output coefficients for each firm defined by x 
1
k/y k 

and x2
k/yk for k = 1, 2, . . ., K.  Now plot these pairs of input output coefficients in a two 

dimensional diagram as in Figure 1 where we have labeled these pairs as the points P1, P2, 
. . ., P5 (so that K = 5). 
 

                                                
4 See also many of the studies in Fox (2002).  Another very useful reference to DEA is the Steering 
Committee for the Review of Commonwealth/State Service Provision (1997).  This study was largely 
written by Denis Lawrence. 
5 For material on variable and unit profit functions, see Diewert (1973) (1974) and Diewert and Wales 
(1992).  Coelli, Prasada Rao and Battese (1997) also compared the three approaches to the measurement of 
efficiency.  Balk (1998; 179-209) also compared the three approaches.  Diewert (1980) was perhaps the 
first to contrast the three approaches and he also included a fourth approach: the Divisia approach.  The 
index number approach was reviewed in detail by Diewert and Nakamura (2003).  
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The convex hull of the 5 data points P1, . . ., P5 in Figure 1 is the shaded set:  it is the set 
of all non-negative weighted averages of the 5 points where the weights sum up to 1.  The 
convex free disposal hull of the original 5 points is the shaded set plus all of the points 
that lie to the north and east of the shaded set.  Farrell took the boundary or frontier of 
this set as an approximation to the unit output isoquant of the underlying production 
function.6  In Figure 1, this frontier set is the piecewise linear curve AP4P3B.  The Farrell 
technical efficiency of the point P1 was defined to be the ratio of distances OD/OP1, since 
this is the fraction (of both inputs) that an efficient firm could use to produce the same 
output as that produced by Firm 1.  A point Pi is regarded as being technically efficient if 
its technical efficiency is unity. 
 
Farrell (1957; 254) noted the formal similarity of his definition of technical efficiency to 
Debreu's (1951) coefficient of resource utilization. 
 
Farrell (1957; 255) also defined two further efficiency concepts using a diagram similar 
to Figure 1.  Suppose Firm 1 faced the fixed input prices w1 and w2 for the two inputs.  
Then we could form a family of isocost lines with slope − w1/w2 and find the lowest such 
isocost line that is just tangent to the free disposal convex hull of the 5 points.  In Figure 
1, this is the line CE which is tangent to the point P3.  Farrell noted that even if the point 
P1 were shrunk in towards the origin to end up at the technically efficient point D, the 
resulting point would still not be the cost minimizing input combination (which is at P3).  
Thus Farrell defined the price efficiency of P1 as the ratio of distances OC/OD.  Finally, 
Farrell (1957; 255) defined the overall efficiency of Firm 1 as the ratio of distances 

                                                
6 Farrell (1957; 254) was assuming constant returns to scale in this part of his paper. 
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OC/OP1.  This measure incorporates both technical and allocative inefficiency.  A point 
Pi is overall efficient if its overall efficiency is unity. 
 
There is a problem with Farrell’s measure of technical efficiency:  Farrell’s definition 
makes the points P2 and P5 in Figure 1 technically efficient when it seems clear that they 
are not: P2 is dominated by P3 which uses less of input 1 to produce the same output and 
P5 is dominated by P4 which uses less of input 2 to produce the same output.  Charnes, 
Cooper and Rhodes (1978; 437) and Färe and Lovell (1978; 151) both noticed this 
problem with Farrell’s definition of technical efficiency and suggested remedies.   
However, in the remainder of this chapter we will stick with Farrell’s original definition 
of technical efficiency, with a few modifications to cover the case of many outputs. 
    
Farrell’s basic ideas outlined above for the case of a one output, constant returns to scale 
technology can be generalized in several ways:  (i) we can relax the assumption of 
constant returns to scale; (ii) we can extend the analysis to the multiple output, multiple 
input case; (iii) we can generalize the analysis to cover situations where it is reasonable to 
assume profit maximizing behaviour (or partial profit maximizing behaviour) rather than 
cost minimizing behaviour and (iv) we can measure inefficiency in different metrics (i.e., 
instead of measuring technical inefficiency in terms of a proportional shrinkage of the 
input vector, we could choose to measure the inefficiency in terms of a basket of outputs 
or a basket of outputs and inputs).  Drawing on the work of Mendoza (1989) and others, 
we shall indicate how the above generalizations (i)-(iii) can be implemented for the case 
of technologies that produce only 2 outputs and utilize only 2 inputs.  The generalization 
to many outputs and inputs is straightforward.  Section 3 below covers approaches that 
use only quantity data while section 4 describes  approaches that utilize both price and 
quantity data.  Section 5 draws on the results of the previous two sections and notes some 
interesting general relationships between various measures of efficiency loss.  Of 
particular interest is a Le Chatelier Principle for measures of allocative inefficiency. 
 
3. Efficiency Tests Using Only Quantity Data 
 
3.1 The Case of a Convex Technology 
 
Suppose that we have quantity data on K production units that are producing 2 outputs 
using 2 inputs.  Let ym

k ≥ 0 denote the amount of output m produced by each production 
unit (or firm or plant) j for m = 1, 2,  and let xn

k ≥ 0 denote the amount of input n used by 
firm k for n = 1, 2 and k = 1, 2, . . ., K. 
 
We assume that each firm has access to the same basic technology except for efficiency 
differences.  An approximation to the basic technology is defined to be the convex free 
disposal hull of the observed quantity data {(y1

k,y2
k,x1

k,x2
k) :  k = 1, ..., K}.  This 

technology assumption is consistent with decreasing returns to scale (and constant returns 
to scale) but it is not consistent with increasing returns to scale. 
 
It is necessary to specify a direction in which possible inefficiencies are measured; i.e., 
do we measure the inefficiency of observation i in terms of output m or input n or some 
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combination of outputs and inputs? Mendoza’s (1989) methodology allowed for an 
arbitrary efficiency direction7 but for simplicity, we will restrict ourselves to the Debreu 
(1951) – Farrell (1957) direction; i.e., we shall measure the inefficiency of observation i 
by the smallest positive fraction δi

* of the ith input vector (x1
i, x2

i) which is such that 
{(y1

k, y2
k, δi

*x1
k, δi

*x2
k) is on the efficient frontier spanned by the convex free disposal hull 

of the K observations.  If the ith observation is efficient relative to this frontier, then δi
* = 

1; the smaller δi
* is, then the lower is the efficiency of the ith observation.  The number δi

* 
can be determined as the optimal objective function of the following linear programming 
problem:8 
 
(1) δi

* = min δi ≥ 0, λ1 ≥ 0, . . ., λK ≥ 0 {δi : Σk=1
K y1

k λk ≥ y1
i ; 

                                                 Σk=1
K y2

k λk ≥ y2
i ; 

                                                 Σk=1
K x1

k λk ≤ δix1
i ; 

                                                 Σk=1
K x2

k λk ≤ δix2
i ; 

                                                      Σk=1
K λk = 1}. 

 
Thus we look for a convex combination of the K data points that can produce at least the 
observation i combination of outputs (y1

i, y2
i) and use only δi times the observation i 

combination of inputs (x1
i, x2

i).  The smallest such δi is δi
*. 

 
The linear programming problems (1) are run for each observation i and the resulting            
δi

* ≥ 0, serves to measure the relative efficiency of observation i; if δi
* = 1, then 

observation i is efficient.  At least one of the K observations will be efficient. 
 
We turn now to the corresponding linear program that tests for efficiency under the 
maintained hypothesis that the underlying technology is subject to constant returns to 
scale (in addition to being convex). 
 
 
3.2 The Case of a Convex, Constant Returns to Scale Technology 
 
In this case, the approximation to the underlying technology set is taken to be the free 
disposal hull of the convex cone spanned by the K data points.  The efficiency of 
observation i is measured by the positive fraction δi

** of the ith input vector (x1
i, x2

i) 
which is such that {(y1

k, y2
k, δi

**x1
k, δi

**x2
k) is on the efficient frontier spanned by the 

conical convex free disposal hull of the K observations.  The efficiency of the ith 
observation relative to this technology set can be calculated by solving the following 
linear program:9 

                                                
7 See Mendoza (1989; 25-30). 
8 See Mendoza (1989; 30) for a general version of Test 1.  The use of linear programming techniques to 
calculate nonparametric efficiencies was first suggested by Hoffman (1957; 284) and first used by Farrell 
and Fieldhouse (1962).  Related tests are due to Afriat (1972; 571) and Diewert and Parkan (1983; 141). 
9 See Mendoza (1989; 44) for a general version of this test that allows for arbitrary directions for the ith 
observation to be contracted to the efficient production frontier.  Here we use the Debreu (1951) 
proportional input direction.  For related versions of this test, see Hanoch and Rothschild (1972; 268-270) 
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(2) δi

** = min δi ≥ 0, λ1 ≥ 0, . . ., λK ≥ 0 {δi subject to:  Σk=1
K y1

k λk ≥ y1
i ; 

                                                                   Σk=1
K y2

k λk ≥ y2
i ;  

                                                                   Σk=1
K x1

k λk ≤ δix1
i
 ; 

                                                                   Σk=1
K x2

k λk ≤ δix2
i}. 

 
Note that the LP (2) is the same as (1) except that the constraint Σk=1

K λk = 1 has been 
dropped.  Thus the optimal solution for (1) is feasible for (2) and thus δi

** ≤ δi
*; i.e., the 

constant returns to scale measure of efficiency for observation i will be equal to or less 
than the convex technology measure of inefficiency for observation i. 
 
We turn now to models that are consistent with increasing returns to scale. 
 
3.3 Quasiconcave Technologies 
 
We first need to define what we mean by a production possibilities set L(y1) that is 
conditional on an amount y1 of output 1.  Let S be the set of feasible outputs and inputs.  
Then L(y1) is defined to be the set of (y2, x1, x2) such that (y1, y2, x1, x2) belongs to S; i.e., 
L(y1) is the set of other outputs y2 and inputs x1 and x2 that are consistent with the 
production of y1 units of output 1.  We assume that the family of production possibilities 
sets L(y2) has the following three properties:  (i) for each y1 ≥ 0, L(y1) is a closed, convex 
set;10 (ii)  if y1′ ≤ y1″, then L(y1″) is a subset of L(y1′) and (iii) the sets L(y1) exhibit free 
disposal. 
 
For each observation i, define the following set of indexes: 
 
(3) I1

i ≡ {k : y1
k ≥ y1

i, k = 1, 2, . . ., K};  
 
i.e., I1

i is the set of observations k such that the amount of output 1 produced by 
observation k is equal to or greater than the amount of output 1 produced by observation 
i.  Note that observation i must belong to I1

i. 
 
Given our assumptions on the underlying technology, it can be seen that the free disposal 
convex hull of the points (y2

j, x1
j, x2

j), j ∈ I1
i, forms an approximation to the set L(y1

i).  
The frontier of this set is taken to be the efficient set.  As usual, we measure the 
efficiency of observation i by the positive fraction δi

*** of the ith input vector (x1
i, x2

i) 
which is such that {(y2

k, δi
***x1

k, δi
***x2

k) is on the efficient frontier defined above.  The 
number can be calculated by solving the following linear program:11 

                                                                                                                                            
and Diewert and Parkan (1983; 142).  The one output version of this test is due to Farrell (1957; 258), 
Farrell and Fieldhouse (1962; 264) and Afriat (1972; 573).   
10 If we represent the underlying technology by means of the production function y1 = f(y2, x1, x2), 
assumption (i) implies that f is a quasiconcave function. 
11 See Mendoza (1989; 54) for a general version of (4) which she called Test 3.  The one output 
quasiconcavity test is due to Hanoch and Rothschild (1972; 259-261).  Diewert (1980; 264)(1981) and 
Diewert and Parkan (1983; 140) developed alternative methods for dealing with a quasiconcave technology 
but the present method seems preferable. 
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(4) δi

*** = min δi ≥ 0, λ1 ≥ 0, . . ., λK ≥ 0 {δi :  Σk∈I1
i y2

k λk ≥ y2
i ; 

                                                    Σk∈ I1
i x1

k λk ≤ δi x1
i ;  

                                                    Σk∈ I1
i x2

k λk ≤ δi x2
i ; 

                                                         Σk∈ I1
i λk = 1} . 

 
On the left hand side of each constraint in (4), the indexes k must belong to the index set 
I1

i defined by (3) above. 
 
Denote the optimal λk for (4) above by λk

*** for k ∈ I1
i.  By the last constraint in (4), we 

have  
 
(5) Σk∈ I1

i λk
*** = 1.  

 
Using definition (3), λk

*** ≥ 0 and (5), it can be seen that  
 
(6) Σk∈ I1

i y1
k

 λk
*** ≥ y1

i.  
 
Using (1), (4) and (6), we see that the optimal solution for (4) is feasible for (1) and thus 
we must have δi

* ≤ δi
***.  Recall that we showed that δi

** ≤ δi
* and so we have  

 
(7) 0 ≤ δi

** ≤ δi
* ≤ δi

***. (7) 
 
Thus the efficiency measures generally increase (or remain constant) as we make weaker 
assumptions on the underlying technology: the biggest efficiency measure δi

*** 
corresponds to a quasiconcave (in output 1) technology, the next measure δi

* corresponds 
to a convex technology, and the smallest efficiency measure δi

** corresponds to a constant 
returns to scale convex technology. 
 
In definition (3) and in the LP (4), output 1 was singled out to play a special role.  
Obviously, analogues to (3) and (4) could be constructed where output 2 played the 
asymmetric role.  In this latter case, the underlying technological assumption is that the y2 
= f(y1,x1,x2) production function is quasiconcave.  This is a somewhat different 
technological assumption than our initial one, but both assumptions are consistent with an 
increasing returns to scale technology.12 
 
This completes our overview of nonparametric efficiency tests that involve the use of 
quantity data.  We now turn to tests that involve both price and quantity data so that 
overall efficiency measures can be constructed in place of the technical efficiency 
measures of this section. 
 
4. Efficiency Tests Using Price and Quantity Data 
 

                                                
12 Mendoza's (1989; 54) Test 3 can also be modified to model quasiconcave technologies of the form x1 = 
g(y1, y2, x2), where g is now a factor requirements function. 
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4.1 The Convex Technology Case 
 
We make the same assumptions on the underlying technology as in section 3.1 above.  
However, we now assume that each producer may be either minimizing cost or 
maximizing profits.13  We consider each case in turn. 
 
Case (i):  Cost Minimization:  
 
We assume that producer k faces the input prices (w1

k, w2
k) for the two inputs.  To 

determine whether producer i is minimizing cost subject to our convex technology 
assumptions, we solve the following linear program:14 
 
(8) min λ1 ≥ 0, . . ., λK ≥ 0 {w1

i(Σk=1
K x1

kλk) + w2
i(Σk=1

K x2
kλk) : Σk=1

K y1
k λk ≥ y1

i
 ;  

                                                                     Σk=1
K y2

k λk ≥ y2
i ; 

                                                                            Σk=1
K λk = 1}  

(9)                 ≡ εi
*[w1

i
 x1

i + w2
i
 x2

i].   
 
The meaning of (9) is that we define the overall efficiency measure εi

* for observation i 
by equating (9) to the optimized objective function in (8).  If we set λi = 1 and the other 
λk = 0, we have a feasible solution for (8) which yields a value of the objective function 
equal to w1

ix1
i + w2

ix2
i.  Thus 0 < εi

* ≤ 1.  The number εi
* can be interpreted as the fraction 

of (x1
i, x2

i)  which is such that εi
*(x1

i, x2
i) on the minimum cost isocost line for observation 

i; i.e., εi
*  is an analogue to the overall efficiency measure OC/OP1 which occurred in 

Figure 1. 
 
Comparing (1) and (8), it can be seen that the optimal λk

* solution for (1) is a feasible 
solution for (8) and thus: 
 
(10) 0 < εi

* ≤ δi
* .  

 
The second inequality in (10) simply reflects the fact that overall efficiency εi

* is equal to 
or less than technical efficiency δi

*  (recall Figure 1 again). 

 
Case (ii): Profit Maximization: 
 
We now assume that firm i also faces the positive output prices (p1

i, p2
i) for the two 

outputs.  To determine whether producer i is maximizing profits subject to our convex 
technology assumptions; we solve the following linear program:15 
 
                                                
13 In contrast to the technical efficiency measures defined in section 2 where at least one observation had to 
be efficient (with an efficiency score of 1), in this section, it can be the case that no observation is efficient. 
14 See Mendoza (1989; 67) for a general version of (8) which she calls Test 4. 
15 This is Mendoza's (1989; 88) Test 7.  It is also a special case of her Test 4.  Since there is only one 
constraint in the problem, the solution to (11) is max k {Σm=1

2
 pm

iym
k – Σn=1

2 wn
i
 xn

k ; k = 1,2,…,K}.  For 
related tests, see Afriat (1972; 594) for the single output case and Hanoch and Rothschild (1972; 268-270) 
and Diewert and Parkan (1983; 151) for the multiple output case. 
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(11) max λ1 ≥ 0, . . ., λK ≥ 0 {Σm=1
2

 pm
i(Σk=1

K
 ym

kλk) – Σn=1
2 wn

i(Σk=1
K

 xn
kλk) : Σk=1

K λk = 1} 
(12)                            ≡ p1

i
 y1

i + p2
i
 y2

i – αi
*[w1

i
 x1

i + w2
i
 x2

i].     
 
Equating (11) to (12) defines the efficiency measure αi

* for observation i.  If we set λi = 1 
in (11) and the other λk = 0, we obtain a feasible value for the objective function equal to 
p1

i
 y1

i + p2
i
 y2

i – [w1
i
 x1

i + w2
i
 x2

i].  Thus αi
* ≤ 1.  If αi

* = 1, then observation i is efficient 
relative to our assumptions on the technology and relative to the hypothesis of complete 
profit maximization.  The interpretation of αi

* is similar to that of εi
* defined above by 

(9). 
 
It can be seen that the optimal λk

* = 0 solution to (8) is feasible for (11).  Using this fact 
and the inequalities in (8), we have:16   
 
(13) αi

* ≤ εi
* .  

 
Thus when we assume that the underlying technology set is convex and calculate the 
efficiency of observation i, εi

*, under the assumption of cost minimizing behavior and 
compare this efficiency level to the relative efficiency of observation i, αi

*, calculated 
under the assumption of profit maximizing behavior, we find that the relative efficiency 
level under the profit maximizing assumption will be equal to or less than the relative 
efficiency level under the cost minimizing assumption.  
 
We now turn to the corresponding linear programs that test for the efficiency of 
observation i under the maintained hypothesis that the underlying technology is subject to 
constant returns to scale. 
 
4.2 The Convex Conical Technology Case 
 
Case (i):  Cost Minimization: 
 
Guided by the results of section 2.2, it can be seen that all we have to do is to drop the 
constraint Σk=1

K λk = 1 from (8).  The resulting optimized objective function is set equal to 
εi

**[w1
ix1

i + w2
ix2

i].  Since the new LP has one less constraint than (8), it will generally 
attain a smaller optimized objective function and so εi

** will generally be smaller than εi
*; 

i.e., 
 
(14) εi

** ≤  εi
*.  

 
By comparing the new LP to (2), we can also show 
 
(15) δi

** ≥  εi
** . 

 
The inequality (14) shows that making stronger assumptions on the underlying 
technology tends to decrease the efficiency measure; i.e., the constant returns to scale 
                                                
16 Mendoza (1989; 76-77) showed this. 
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measure of the efficiency of observation i, εi
**, will be equal to or less that the convex 

technology measure of the efficiency of observation i, εi
*.  The inequality (15) shows that 

assuming cost minimizing behaviour tends to decrease the efficiency of observation i, 
εi

**, compared to the measure of technical efficiency that we obtained earlier for 
observation i, δi

**.17 
 
Case (ii):  Profit Maximization: 
 
As in section 2.2, we could approximate the underlying technology set by the free 
disposal hull of the convex cone spanned by the K data points.  To determine whether 
observation i is on the frontier of this set, we could attempt to solve the LP problem (11) 
after dropping the constraint Σk=1

K λk = 1.   Unfortunately, the resulting optimal objective 
function is either 0 or plus infinity.  Hence a different approach is required. 
 
In order to obtain an operational approach, we consider a conditional profit maximization 
problem in place of the full profit maximization problem that appears in the objective 
function of (11); i.e., we allow firm i to maximize profits but we assume that the level of 
one input is fixed in the short run.  Thus if the fixed input is input 2, to determine whether 
producer i is maximizing (variable) profits subject to our convex, conical technology 
assumptions, we solve the following linear programming problem:18 
 
(16) 

0,...,00 21
max !!!

K
"""  {Σm=1

2
 pm

i(Σk=1
K

 ym
kλk) − Σn=1

2
 wn

i(Σk=1
K

 x1
kλk) : Σk=1

K x2
k

 λk ≤ x2
i} 

(17)                             = max k {[Σm=1
2

 pm
i
 ym

k − (Σn=1
2

 wn
ix1

k)][x2
i/x2

k] : k = 1,2,…,K}19 
(18)                    ≡ p1

i
 y1

i + p2
i
 y2

i − αi
**[w1

ix1
i + w2

i
 x2

i]    
 
where (18) serves to define the observation i efficiency measure αi

**.  Note that λi = 1 and 
the other λk = 0 is a feasible solution for (16) and this implies that αi

** ≤ 1.20 
 
The simple maximization problem defined by (17) can be written in the following 
instructive way: 
 
(19) max k {[Σm=1

2
 pm

i
 ym

k − (Σn=1
2

 wn
ix1

k)][x2
i/x2

k] : k = 1,2,…,K} 
          = x2

i max k {Σm=1
2

 pm
i
 [ym

k/x2
k] − (Σn=1

2
 wn

i [xn
k/x2

k]) : k = 1,2,…,K}. 
 
Note that the points [y1

k/x2
k, y2

k/x2
k, x1

k/x2
k, x2

k/x2
k] = [y1

k/x2
k, y2

k/x2
k, x1

k/x2
k, 1] are feasible 

output and input vectors under our constant returns to scale assumption but where the 
amount of input 2 is fixed at the level 1.  Thus the maximization problem in (19) scales 
each observed output-input vector k so that the resulting scaled last input level is equal to 
1 and then we take the output and input prices faced by production unit i, [p1

i
 , p2

i
 , w1

i, 
                                                
17 These results and the appropriate general test may be found in Mendoza (1989; 78), which she called 
Test 5. 
18 The constraint in (16) will hold as an equality in the optimal solution.  Hence the nonnegative λk

* which 
solve (16) serve to define a weighted combination of the K data points which uses the observation i amount 
of input 2, x2

i, and maximizes profits at the prices of observation i.  
19 We require x2

k > 0 for k = 1,2,…,K in order to derive (17) from (16). 
20 A sufficient condition to ensure that the solution to (16) is finite is x2

k > 0 for k = 1,…,K.    
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w2
i], evaluate unit profits at these prices for each scaled output-input vector k, p1

i[y1
k/x2

k] 
+ p2

i[y2
k/x2

k] − w1
i[x1

k/x2
k] − w2

i[x1
k/x2

k], take the maximum over k of these hypothetical 
profits and then scale the resulting hypothetical profits by the observation i level of the 
“fixed” input, which is equal to x2

i.    
 
Comparison of (2) and (16) shows that the optimal solution to (2) generates a feasible 
solution for (16) and thus  
 
(20) δi

** ≥ αi
** ; (20) 

 
i.e., the observation i technical efficiency measure δi

** is always equal to or greater than 
the overall observation i (conditional on input 2) profit maximization efficiency measure 
αi

**. 
 
Since the LP problem (16) does not simply drop the constraint Σk=1

K λk = 1, the single 
constraint in the convex technology LP problem (11), we cannot develop an inequality 
between the solution to (16) and the solution to (11).  However, since both problems use 
all of the price and quantity data pertaining to the K observations, typically the solutions 
to (11) and (16) will be similar in that the efficiencies generated by these models will 
tend to be much lower than the technical efficiencies generated by the models presented 
in section 3.  
 
4.3 The Quasiconcave Technology Case 
 
We consider only the cost minimization case.21   
 
We make the same technology assumptions as were made in section 3.3.  Recall the 
index set I1

i defined by (3).  To determine whether producer i is minimizing cost subject 
to our quasiconcave technology in output 1 assumption, we solve the following linear 
program: 
 
(21) 0,...,00 21

min !!!
K
"""  {w1

i(Σk∈ I1
i 
 x1

k
 λk) + w2

i(Σk∈ I1
i
 x2

k
 λk) : Σk∈I1

i y2
k λk ≥ y2

i ; 
                                                                                                     Σk∈ I1

i λk = 1} 
(22)                    ≡ εi

***[w1
ix1

i + w2
i
 x2

i]   

 
As usual, εi

*** is our measure of overall efficiency for observation i under our present 
assumptions on the technology and on the producer's behaviour.  Since the index i 
belongs to the index set I1

i (recall (3)), it can be seen that λi = 1 and the other λk = 0 is 
feasible for the LP(21) and gives rise to the feasible value for the objective function equal 
to w1

ix1
i + w2

i
 x2

i.  Thus εi
*** ≤ 1.   It is also possible to see that the optimal δi

***, 
λi

*** solution to (4) is a feasible εi, λk solution for (21).  Thus 
 
(23) 0 ≤ εi

*** ≤ δi
*** ;  

 
                                                
21 Mendoza (1989; 83) considered more general cases in her Test 6. 
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i.e.,  the (quasiconcave in output 1) cost minimizing overall efficiency for observation i, 
εi

***, will be equal to or less than the corresponding (quasiconcave in output 1) technical 
efficiency loss for observation i, δi

***. 
 
Comparing (21) with (8) and using the definition of the index set I1

i (recall (3)), it can be 
seen that the optimal λk

***, εi
*** solution for (21) is a feasible solution for (8).22  Thus  

 
(24) εi

*** ≥  εi
* ; (24) 

 
i.e., the observation i efficiency measure assuming a quasiconcave technology and cost 
minimizing behaviour εi

***
 will be equal to or greater than the observation i efficiency 

measure assuming a convex technology and cost minimizing behaviour εi
*. 

 
5. Relationships between the Efficiency Measures 
 
The inequalities derived in the previous two sections can be summarized by two rules.  
Note that all efficiency measures are measured in the same metric. 
 
Rule 1:   The nonparametric efficiency measures tend to fall as we make more restrictive 
technological assumptions; i.e., the quasiconcave technology efficiency measure will be 
equal to or greater than the corresponding convex technology efficiency measure which 
in turn will be equal to or greater than the corresponding convex conical technology loss 
measure. 
 
Rule 2:   The nonparametric efficiency measures tend to fall as we assume optimizing 
behaviour over a larger number of goods; i.e., the  technical efficiency measure will be 
equal to or greater than the corresponding cost minimizing efficiency measure which will 
be equal to or greater than the corresponding profit maximizing efficiency measure.  This 
is Mendoza's (1989; 76-77) Le Chatelier Principle for measures of allocative efficiency. 
 
We illustrate some of the above points using some Canadian data in the following 
section. 
 
6. An Empirical Comparison of Alternative Efficiency Measures for Canada 
 
We use National Accounts and OECD data for Canada for the years 1980-2004 in order 
to illustrate the above programs.23  Producer data on three (net) outputs and two primary 
inputs are used.  The three net outputs are: domestic output, y1 (C + G +I); exports, y2; 
and minus imports, y3.  The two primary inputs are: labour, x1 and reproducible capital, 
x2.  These data are listed below in Table 1.24 
 

                                                
22 Using definition (3), λk

*** ≥ 0 and (5), it can be seen that i
Ik
1

!
"  y1

k
 λk

*** ≥ y1
i. 

23 We did not compute the quasiconcavity efficiencies  since these tend to be close to 1 and are not very 
informative.  
24 See Diewert (2005) for a description of how the data were constructed.   
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Table 1: Quantity Data on Net Outputs and Primary Inputs for Canada, 1980-2004 
 
   Year            y1            y2              y3            x1             x2 
    1980        88.22       23.23      −25.38      42.36       36.83 
    1981        91.73       23.62      −26.02      44.11       38.24 
    1982        85.45       23.20      −21.80      42.68       40.07 
    1983        89.07       24.63      −24.01      42.90       40.60 
    1984        93.38       29.21      −28.12      43.97       41.52 
    1985        98.49       30.63      −30.48      45.27       42.82 
    1986      101.71       31.97      −32.68      46.76       44.38 
    1987      106.53       32.95      −34.43      47.92       46.02 
    1988      112.55       35.95      −39.10      49.44       48.04 
    1989      116.91       36.24      −41.39      50.53       50.46 
    1990      116.22       37.97      −42.23      50.88       53.07 
    1991      114.12       38.66      −43.28      49.91       54.92 
    1992      114.44       41.45      −45.31      49.47       56.14 
    1993      115.95       45.97      −48.66      49.68       57.03 
    1994      119.46       51.83      −52.58      50.64       57.94 
    1995      121.39       56.22      −55.60      51.60       59.29 
    1996      122.85       59.40      −58.42      51.87       60.72 
    1997      130.60       64.35      −66.78      52.95       62.06 
    1998      133.68       70.18      −70.19      54.25       64.51 
    1999      139.19       77.75      −75.66      55.87       66.80 
    2000      145.42       84.61      −81.75      57.50       69.42 
    2001      147.83       81.96      −77.62      58.36       72.42 
    2002      155.53       82.19      −78.29      59.70       74.95 
    2003      162.32       81.51      −82.07      60.93       77.73 
    2004      168.06       85.49      −88.78      61.75       80.95 
 
The corresponding producer prices, p1, p2, p3 for net outputs and w1 and w2 for primary 
inputs are listed in Table 2.25 
 
Table 2: Price Data on Net Outputs and Primary Inputs for Canada, 1980-2004 
 
  Year          p1             p2              p3              w1             w2 
  1980      3.0783      3.7382      3.3640       4.3250      2.8210 
  1981      3.4053      4.0361      3.7466       4.6735      3.1366 
  1982      3.7361      4.1491      3.9089       5.1695      3.2346 
  1983      3.9537      4.1960      3.9273       5.4053      3.3299 
  1984      4.1081      4.3480      4.1334       5.6786      3.4856 
  1985      4.2730      4.4370      4.2510       5.9370      3.5477 
  1986      4.4630      4.4283      4.3272       6.1151      3.6578 
  1987      4.6241      4.5167      4.2734       6.5117      3.8049 
                                                
25 All prices were normalized to equal 1 in the year 1960.  We did not use our data set which extends back 
to 1960 in the interests of presenting smaller tables. 
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  1988      4.8124      4.5288      4.1715       6.9206      3.9791 
  1989      5.0277      4.6281      4.1734       7.2986      4.1243 
  1990      5.2515      4.5938      4.2160       7.6279      4.1099 
  1991      5.4192      4.4235      4.1456       8.0047      4.0010 
  1992      5.5112      4.5500      4.3145       8.2749      4.0053 
  1993      5.6198      4.7522      4.5751       8.4190      4.1214 
  1994      5.7082      5.0337      4.8661       8.4753      4.3004 
  1995      5.7797      5.3564      5.0152       8.5948      4.3944 
  1996      5.8433      5.3863      4.9523       8.7775      4.4662 
  1997      5.9309      5.3945      4.9883       9.1036      4.6262 
  1998      5.9969      5.3772      5.1623       9.3415      4.6238 
  1999      6.0794      5.4361      5.1471       9.5678      4.6415 
  2000      6.2151      5.7743      5.2620     10.0450      4.7601 
  2001      6.3336      5.8617      5.4230     10.3032      4.7135 
  2002      6.4492      5.7705      5.4544     10.4646      4.7970 
  2003      6.5617      5.6630      5.0758     10.6265      4.8548 
  2004      6.6784      5.7843      4.9621     10.8718      5.0059 
 
The tests for technical efficiency of each observation, (1) and (2) in sections 3.1 and 3.2, 
were run using the quantity data listed in Table 1 above.26  The relative technical 
efficiencies of the year i observation assuming a convex technology set, δi

*, and assuming 
a convex, constant returns to scale technology set, δi

**, are listed in Table 3 below.  The 
cost minimization relative efficiencies εi

* defined by (8) and (9) in section 4.1 for the case 
of a convex technology and εi

** defined in section 4.2 for the case of a convex, constant 
returns to scale technology are also listed in Table 3 below.  The profit maximization 
relative efficiencies αi

* defined by (11) and (12) in section 4.1 for the case of a convex 
technology and αi

** defined by (16) and (18) in section 4.2 for the case of a convex, 
constant returns to scale technology (with capital fixed) are also listed in Table 3 below. 
 
Finally, we use the data in Tables 1 and 2 to construct: 
 

• a chained Fisher (1922) ideal index of net outputs, Yt for year t;  
• a chained Fisher ideal index of primary inputs Xt for year t and 
• a measure of index number productivity in year t equal to Prodt ≡ Yt/Xt. 

 
In order to make the resulting index number estimates of Canada’s productivity for the 
years 1980-2004, we normalize the productivities by dividing by Prod2002.  This makes 
the resulting normalized index number estimates of productivity, NProdi, comparable to 
the profit maximizing estimates of relative efficiency listed in Table 3, since we had α2002

* 
= α2002

** = 1 and the year 2002 was the only efficient observation for both αi
* and αi

**.  
The normalized index number estimates of productivity are listed in the last column of 
Table 3.      
 

                                                
26 We have three (net) outputs instead of two outputs but the reader need only modify the tests in the 
obvious ways. 
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Table 3: Relative Efficiencies for Canada, 1980-2004 
 
 Year i       δi

*            δi
**          εi

*            εi
**           αi

*            αi
**      NProdi                                  

  1980    1.0000     1.0000     1.0000     0.9977     0.8308     0.8847     0.8629 
  1981    1.0000     1.0000     1.0000     1.0000     0.8480     0.8922     0.8604 
  1982    1.0000     1.0000     1.0000     1.0000     0.7574     0.8438     0.8422 
  1983    1.0000     1.0000     1.0000     1.0000     0.7659     0.8659     0.8630 
  1984    1.0000     1.0000     1.0000     1.0000     0.8163     0.8982     0.8894 
  1985    1.0000     1.0000     1.0000     1.0000     0.8345     0.9121     0.9015 
  1986    0.9912     0.9909     0.9893     0.9880     0.8343     0.9072     0.8929 
  1987    1.0000     1.0000     1.0000     1.0000     0.8465     0.9114     0.9026 
  1988    1.0000     1.0000     1.0000     1.0000     0.8600     0.9156     0.9095 
  1989    1.0000     1.0000     1.0000     1.0000     0.8528     0.9042     0.9021 
  1990    0.9844     0.9810     0.9728     0.9706     0.8345     0.8830     0.8833 
  1991    0.9824     0.9666     0.9596     0.9437     0.8170     0.8619     0.8655 
  1992    0.9874     0.9635     0.9601     0.9432     0.8273     0.8665     0.8717 
  1993    0.9890     0.9525     0.9632     0.9406     0.8457     0.8805     0.8844 
  1994    0.9924     0.9502     0.9732     0.9497     0.8767     0.9075     0.9088 
  1995    0.9882     0.9479     0.9704     0.9435     0.8804     0.9113     0.9147 
  1996    0.9922     0.9449     0.9701     0.9372     0.8857     0.9132     0.9179 
  1997    1.0000     0.9807     0.9955     0.9526     0.9147     0.9337     0.9355 
  1998    0.9978     0.9752     0.9892     0.9534     0.9322     0.9436     0.9457 
  1999    0.9992     0.9982     0.9945     0.9791     0.9580     0.9671     0.9675 
  2000    1.0000     1.0000     1.0000     1.0000     0.9795     0.9854     0.9838 
  2001    1.0000     1.0000     1.0000     1.0000     0.9780     0.9806     0.9812 
  2002    1.0000     1.0000     1.0000     1.0000     1.0000     1.0000     1.0000 
  2003    1.0000     1.0000     1.0000     1.0000     0.9951     0.9918     0.9926 
  2004    1.0000     1.0000     1.0000     1.0000     0.9985     0.9910     0.9928 
  
Looking at Table 3, it can be seen that the various efficiency measures satisfy the 
following inequalities, which we showed in sections 3 and 4 must be satisfied: 
 
(25) δi

** ≤  δi
* ; 

(26) εi
** ≤  εi

* ; 
(27) αi

* ≤ εi
* ≤  δi

* ; 
(28) εi

** ≤  δi
** ; 

(29) αi
** ≤  δi

** . 
 
For the Canadian data set, we also find empirically that 
 
(30) αi

** ≤ εi
**. 

 
However, we cannot establish the inequality (30) as a theoretical certainty.  Looking at 
αi

* versus αi
**, for the Canadian data, it can be seen that for the most part, αi

* ≤ αi
** and 

sometimes αi
* is substantially below αi

**; i.e., the relative efficiency of an observation 
when we assume profit maximizing behavior and a convex technology, αi

*,  is generally 
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less than the corresponding relative efficiency of an observation when we assume profit 
maximizing behavior subject to a fixed capital constraint and a convex, constant returns 
to scale technology, αi

**.  However, for the years 2003 and 2004, this relationship does 
not hold. 
 
Perhaps the most interesting thing to note about the results listed in Table 3 is that with 
the exception of the first two years, the index number estimates of efficiency, NProdi, are 
reasonably close to the efficiency estimates, αi

**, which are based on a (variable) profit 
maximizing model where we assume capital is fixed and assume that there is a convex, 
constant returns to scale technology.  These results are similar to the results obtained by 
Mendoza (1989; 111), who obtained nonparametric productivity indexes that were quite 
similar to the corresponding index number measures of productivity.27 
 
7. A Comparison of the Alternative Methods for Measuring Productive Efficiency 
 
We summarize our comparison of alternative methods for measuring the relative 
efficiency of a number of production units in the same industry in point form. 
 

• Nonparametric or DEA techniques have an overwhelming advantage over index 
number and econometric methods when only quantity data  are available.  Index 
number methods cannot be implemented without a complete set of price and 
quantity data.  Econometric methods (i.e., production function methods) are not 
likely to be successful if only quantity data are available due to limited degrees of 
freedom.28 

 
• The relative efficiency of any single observation will tend to decrease as the 

sample size increases.  All three methods have this problem. 
 

• Nonparametric and econometric efficiency scores will tend to increase as we 
make less restrictive assumptions on the underlying technology; i.e., a 
quasiconcave technology set is less restrictive than a convex technology set which 
in turn is less restrictive than a constant returns to scale convex technology set.  
Index number estimates of efficiency remain unchanged as we change our 
assumptions on the technology. 

 
• Nonparametric and economic efficiency scores  will tend to decrease as we make 

stronger assumptions about the optimizing behaviour of producers; recall Rule 2 
in section 5.  It is not clear what will happen to econometric based efficiency 
scores under the same conditions.  Since index number methods are based on the 

                                                
27 Mendoza (1989; 129-134) also obtained econometric estimates of sectoral technical change for Canada 
and she compared these estimates with her nonparametric estimates of sectoral technical change.  Her 
results showed that the econometric estimates of efficiency change are simply a highly smoothed version of 
the corresponding nonparametric estimates.  Diewert and Wales (1992; 718) and Fox (1996) showed that 
econometric estimates of efficiency change were approximately equal to smoothed versions of index 
number estimates of productivity growth.   
28 Diewert (1992) discusses this point at some length. 
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assumption of complete optimizing behaviour we cannot vary our assumptions on 
optimizing behaviour when using index number methods. 

 
• If we hold the number of observations in our sample constant but disaggregate the 

data so that the number of inputs or outputs is increased, then nonparametric 
efficiency scores will tend to increase29.   However, index number efficiency 
scores will generally remain unaffected by increasing disaggregation30.  It is not 
clear what will happen using econometric methods. 

 
• The cost of computing index number estimates of relative efficiency is extremely 

low; the cost of the nonparametric estimates is low and the cost of computing 
econometric estimates can be very high if the number of goods exceeds 20 and 
flexible functional form techniques are used.31 

 
• When complete price and quantity data are available, the nonparametric estimates 

based on a constant returns to scale technology and profit maximizing behaviour 
(subject to one input being fixed) are approximately equal to the  corresponding 
index number estimates.  Econometric estimates based on the same assumptions 
will tend to be similar to the first two sets of estimates (but much smoother in the 
time series context). 

  
• Nonparametric techniques can be adapted to deal with situations where input 

prices are available but not output prices.  Econometric techniques can also deal 
with this situation but index number methods cannot be used in this situation.32 

 
• Nonparametric methods may be severely biased due to measurement errors; i.e., 

the best or most efficient observation in a DEA study may be best simply because 
some output was greatly overstated or some important input was greatly 
understated.  Index number methods are also subject to measurement errors but 
econometric methods may be adapted to deal with gross outliers. 

 

                                                
29 As we disaggregate, the objective functions of the various linear programming problems will remain 
unchanged but the feasible regions for the problems become more constrained or smaller and hence the 
objective function minimums for the linear programming problems will become larger.  Hence, the loss 
measures will decrease or remain constant and thus efficiency will tend to increase as we disaggregate.  
This point was first made by Nunamaker (1985).  The profit maximization problems (11) and (16) are not 
affected by disaggregation. 
30 This follows from the approximate consistency in aggregation property of superlative index number 
formulae like the Fisher and Törnqvist formulae; see Diewert (1978; 889 and 895). 
31 The cost of estimating a fully flexible or semiflexible functional form can be high in terms of the 
analyst’s time in doing the econometric estimation.  When curvature conditions are imposed using the 
normalized quadratic functional form and the number of commodities are large, then in order to ensure 
convergence of the nonlinear regression using Shazam, it is necessary to gradually increase the rank of the 
substitution matrix by adding an additional rank one matrix to the already estimated substitution matrix and 
then rerun the model using the finishing parameter values of the previous model as starting values for the 
new model and so on.  The procedure terminates after an iteration where the log likelihood of the model 
does not increase significantly.  
32 An exception occurs if there is only one output. 
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Our overall conclusion is that DEA methods for measuring relative efficiency can be 
used profitably in a wide variety of situations when other methods are not practical or are 
impossible to use. 
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