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Abstract

About one-quarter of the individual items tracked under the International Price Program (IPP) of
the Bureau of Labor Statistics (BLS) do not report a price in any given month, though of these,
about 60% eventually supply a price quote for that month or a later month.  This means that there
is a substantial number of individual prices that are missing at the time the monthly index must
be constructed and published.  For this reason, the IPP program imputes the missing prices.
Despite this common practice, there has been practically no theoretical or empirical work
examining the consequences of different imputation methods.  The goal of this paper is to begin
to fill this theoretical gap, and also demonstrate the consequences of different imputation
methods using recent data from the IPP.  Our conclusion is that imputation is worthwhile.
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1. Introduction

Published price indexes are nearly always constructed from individual prices collected by some
sampling framework, were the samples are chosen, in part, to minimize the time and expense
involved in collecting the prices.  In particular, the time spent by reporting firms or consumers is
quite rightly treated as precious.  It is inevitable that questionnaires sent out in repeated months
will sometimes not be returned.  For example, about one-quarter of the individual items tracked
under the International Price Program (IPP) of the Bureau of Labor Statistics (BLS) do not report
a price in any given month, though of these, about 60% eventually supply a price quote for that
month or a later month.  This means that there is a substantial number of individual prices that
are missing at the time the monthly index must be constructed and published.  For this reason,
the IPP program imputes the missing prices, and we expect that this practice is followed by many
other statistical agencies in the U.S. and abroad.  Despite this common practice, there has been
practically no theoretical or empirical work examining the consequences of different imputation
methods (a notable exception is Armknecht and Maitland-Smith, 1999).  The goal of this paper is
to begin to fill this theoretical gap, and also demonstrate the consequences of different
imputation methods using recent data from the IPP.

Price quotations could be missing for a number of reasons, including the following ones:

• Observations could be missing due to random or erratic reporting on the part of respondents;
• Observations could be missing due to strong seasonality in the pattern of production;
• Observations could be missing due to technological progress or changing market conditions;

i.e., new models or varieties replace the commodities that were in the initial sampling frame.

Obviously, seasonal commodities that are sold in the marketplace for only certain months of the
year will give rise to missing observations.  Similarly, the replacement of an “old” commodity by
a “new” one will also lead to missing observations (for the old commodities).

An appropriate treatment of seasonal commodities that are available only in certain months of
the year leads to complexities that we will not address here.2  Also, we will not deal with the
disappearing goods problem.  Thus, we concentrate on the first reason for missing price
quotations: random or erratic reporting.  With the problem of missing observations narrowed
down to the first reason, the situation is similar to that used in the stochastic approach to index
number theory.3

Before we develop the theory, it will be useful to frame the problem a bit more.  The first thing
we have to decide is: what index are we trying to construct?  We assume that the goal is to
construct a fixed base Laspeyres price index.  As mentioned above, we ignore the seasonality
and new goods problems for now.  Thus assume that we have a sample of base period 0 prices,
pn

0, that pertain to some class of commodities for say January of the base year.  We follow that

                                                
2 For an introduction to these index number complexities and references to the literature, see Alterman, Diewert and
Feenstra (1999) and Diewert (1998) (1999).
3 Recent references to the literature on the stochastic approach to index number theory include Bryan and Cecchetti
(1993) (1994), Ceccheti (1997), Clements and Izan (1987), Diewert (1995) (1997), Selvanathan and Rao (1994) and
Wynne (1997) (1999).
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sample of commodity prices up to the current period t and these period t prices are pn
t for n =

1,2,…,N.  We also have some base period sample weights, wn
0, for n = 1,2,…,N.  Now assume

that in period t > 0, that some price quotes are missing for whatever reason.  Denote the set of
commodity indexes for which we have price information in period t by S(t).  Then a possible
candidate for estimating the true fixed base Laspeyres index for period t is the following index:

(1)  PL(0,t) ≡ ∑n∈S(t) wn
0 (pn

t/pn
0) / ∑n∈S(t) wn

0 ;

i.e., we take the summation over quotes n in period t for which we have real information, and we
rescale the weights wn

0 so that they sum to 1.  This avoids the problem of imputing prices for
missing observations and it appears that this is the end of the story.

But is this the end of the story?  The answer is yes if all price relatives have the same mean
whether they are in the current sample or not.  The answer is no if the pattern of price
movements for commodities that are always in the sample is different from the pattern of price
changes for commodities that do not have reported price quotes for every period.  In our
empirical work, we find that the answer is no rather than yes.  Thus if price relatives in the
current sample have a different mean than price relatives that are not in the current sample, as
commodities rotate in and out of the sample, we would find a certain amount of spurious price
“bouncing” in our estimated long term Laspeyres index.

In an effort to minimize this price bouncing behavior, one approach would be to use the
following modified Laspeyres index for period t:

(2)  PML(0,t) ≡ ∑n∈S(t)∩S(t-1) wn
0 (pn

t/pn
0) / ∑n∈S(t)∩S(t-1) wn

0 ;

i.e., the summation is now taken over the intersection of the quotes or commodities that are
present in the marketplace during both periods t-1 and t.  This new index will ensure that like is
being compared with like when we go from period t-1 to period t but in order to eliminate the
bouncing phenomenon entirely over the entire sample period, we would have to restrict the
summation in (2) to commodities that have reported price quotes in every period. This would
drastically reduce the effective sample size. Even comparing (1) with (2), we see that (1) is the
most accurate long term index for period t that makes full use of the available information.  Put
another way, the modified Laspeyres formula (2) throws away useful information.

The actual method used by the IPP differs slightly from (2), and instead considers the ratio of
these long term Laspeyres indexes:

(3)  PR(t-1,t) ≡ [∑n∈S(t)∩S(t-1) wn
0 (pn

t/pn
0) ]/[∑n∈S(t)∩S(t-1) wn

0 (pn
t-1/pn

0)]

i.e., the summation in the numerator and denominator is now taken over the intersection of the
quotes or commodities that are present in the marketplace during both periods t-1 and t.   Given
this short term index, the long term index is then obtained by the cumulative formula,

(4)   PR(0,t) ≡ PR(0,t-1) PR(t-1,t),  with PR(0,0) ≡ 1.
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Summing up, we have introduced three methods of constructing indexes when the set of
commodities is changing over time:  the fixed base Laspeyres index in (1), which uses all the
information available; the modified Laspeyres index in (2), which uses the same set of
commodities in periods t-1 and t; and the Laspeyres-ratio method in (3) and (4), which first
constructs the short term index, and then cumulates it to obtain the long term index.  It is
immediate that if the set of commodities is equal over time, then these three methods are
equivalent, but otherwise they are not.  The question then arises as to which index method would
best approximate the (unobserved) fixed base Laspeyres index that does not suffer from the
missing prices.

The above descriptive material should give the reader an indication of the problems that we are
attempting to address.  In section 2 below, we introduce a somewhat artificial model where some
commodities have price quotes for every period, some commodities have price quotes available
for only odd numbered periods and some commodities have price quotes available for only even
numbered periods.  In section 3, we derive the long term fixed base Laspeyres index that
corresponds to (1) above (in the context of our simple model) and show that it is consistent with
a simple imputation procedure.  In section 4, we consider the actual imputation method used by
the Bureau of Labor Statistics (BLS), and other agencies, which is most similar to the formulas
(3)-(4), but extends these by imputing some of the “missing” prices.  In section 5, we allow
revisions to indexes and consider imputation procedures based on interpolation methods that
seems superior to those considered in sections 3 and 4.  Following this, in sections 6-9 the
various imputation methods are evaluated using data from the International Prices Program (IPP)
of the BLS.

2.  A Simple Model

We assume that there are three classes of commodities under consideration:

• Commodities that have price quotes available in every period.  We assume that there are N
such commodities (or reporting units) and the price and quantity vectors for these always
available commodities are pt ≡ (p1

t,…,pN
t) for periods t = 0,1,2,…,T.  There is also

information available on a base period quantity vector, q0 ≡ (q1
0,…,qN

0).

• Commodities that report price quotes only for odd numbered periods (in addition to the base
period 0).  We assume that there are J such commodities (or reporting units) and the price
vectors for these commodities are ut ≡ (u1

t,…,uJ
t) for t = 0,1,2,…,T.  However, we only are

able to observe these price vectors for periods 0,1,3,5,….  We also assume that we can
observe the period 0 quantity vector for these commodities,   x0 ≡ (x1

0,…,xJ
0).

• Commodities that report price quotes only for even numbered periods.  We assume that there
are K such commodities (or reporting units) and the price vectors for these commodities are
vt ≡ (v1

t,…,vK
t) for t = 0,1,2,…,T.  However, we only are able to observe these price vectors

for periods 0,2,4,….  We also assume that we can observe the period 0 quantity vector for
these commodities, y0 ≡ (y1

0,…,yK
0).

Thus our visible data array can be written in tabular form as follows:
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Period                          Prices                        Quantities

0                             p0      u0     v0                 q0      x0     y0

1                             p1      u1     __                __     __     __
2                             p2      __     v2                __     __     __
3                             p3      u3     __                __     __     __
4                             p4      __     v4                __     __     __
…                                    …                                  …

We assume that our goal is to construct the sequence of fixed base Laspeyres price indexes
)t,0(PL defined as follows:

(5)  )t,0(PL  ≡ [pt•q0 + ut•x0 + vt•y0] / [p0•q0 + u0•x0 + v0•y0] ;        t = 0,1,2,…,T

where pt•q0 ≡ ∑n=1
N pn

t qn
0 denotes the inner product between the vectors pt and q0, etc.  Of

course, our problem is that we do not have all of the price information available to calculate the
sequence of fixed base Laspeyres indexes defined by (5).

It will be useful to define the sequence of fixed base Laspeyres price indexes, Pα(0,t), over the set
of always available commodities as follows:

(6)  Pα(0,t) ≡ pt•q0 / p0•q0                                                                     t = 1,2,….,T
            = ∑n=1

N pn
t qn

0 / p0•q0

            = ∑n=1
N [pn

t / pn
0] pn

0 qn
0 / p0•q0

= ∑n=1
N wn

0 [pn
t / pn

0]

where the base period expenditure share of commodity n compared to the total base period
expenditures of always reported commodities is wn

0 defined by

(7)  wn
0 ≡ pn

0 qn
0 / p0•q0 ;                                                                    n = 1,2,…,N.

Thus from the last line of equations (6), we see that Pα(0,t) is a base period share weighted
average of the period t long term price relatives, pn

t / pn
0.  If we take the stochastic approach to

index number theory, we could assume that each of these price relatives has the same mean and
then the Laspeyres index Pα(0,t) would be a good estimator for this unknown mean.

In a similar fashion, it is useful to define the sequence of fixed base Laspeyres price indexes,
Pβ(0,t), over the set of commodities, reported only in odd periods, as follows:

(8) Pβ(0,t) ≡ ut•x0 / u0•x0                                                                t = 1,2,….,T
            = ∑j=1

J uj
t xj

0 / u0•x0

            = ∑j=1
J [uj

t / uj
0] uj

0 xj
0 / u0•x0

            = ∑j=1
J wj

0 [uj
t / uj

0]
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where the base period expenditure share of commodity j compared to the total base period
expenditures of commodities available only in odd periods is wj

0 defined by

(9)   wj
0 ≡ uj

0 xj
0 / u0•x0 ;                                                                   j = 1,2,…,J.

Again, we see that Pβ(0,t) is a base period share weighted average of the period t long term price
relatives, uj

t /  uj
0.  If we take the stochastic approach to index number theory, we can again

assume that each of these price relatives has the same mean and then the Laspeyres index Pβ(0,t)
is a good estimator for this unknown mean.  Note that we have defined Pβ(0,t) for all periods t
even though we can observe Pβ(0,t) only for odd numbered periods.  Thus the situation is
different than it was for the Pα(0,t) term Laspeyres indexes, which were observable for every
period.

Finally, it is useful to define the sequence of fixed base Laspeyres price indexes, Pγ(0,t), over the
set of commodities reported only in even periods as follows:

(10) Pγ(0,t)  ≡ vt•y0 / v0•y0                                                                     t = 1,2,….,T
            = ∑k=1

K vk
t yk

0 / v0•y0

            = ∑k=1
K [vk

t / vk
0] vk

0 yk
0 / v0•y0

            = ∑k=1
K wk

0 [vk
t / vk

0]

where the base period expenditure share of commodity k compared to the total base period
expenditures of commodities available only in even periods is wk

0 defined by

(11)   wk
0 ≡ vk

0 yk
0 / v0•y0 ;                                                                    k = 1,2,…,K.

Again, we see that Pγ(0,t) is a base period share weighted average of the period t long term price
relatives, vk

t / vk
0.  If we again take the stochastic approach to index number theory, we can

assume that each of these price relatives has the same mean and then the Laspeyres index Pγ(0,t)
is a good estimator for this unknown mean.  Note that we have defined Pγ(0,t) for all periods t
even though we can observe Pγ(0,t) only for even numbered periods.  It is this lack of
observability for Pβ(0,t) and Pγ(0,t) for even and odd periods that causes the problems that we
attempt to address in the remainder of this paper.

We can use the above definitions to rewrite the true long term Laspeyres price index for period t,
defined by (5) above, as follows:

(12) )t,0(PL  ≡ [pt•q0 + ut•x0 + vt•y0] / [p0•q0 + u0•x0 + v0•y0] ;                  t = 0,1,2,…,T

= {p0•q0[pt•q0/ p0•q0] + u0•x0 [ut•x0/ u0•x0] + v0•y0 [vt•y0/v0•y0]}/[p0•q0 + u0•x0 + v0•y0] =

{p0•q0 [Pα(0,t)] + u0•x0 [Pβ(0,t)] + v0•y0 [Pγ(0,t)]} / [p0•q0 + u0•x0 + v0•y0]

=  wα [Pα(0,t)] + wβ [Pβ(0,t)] + wγ [Pγ(0,t)]

where the base period expenditure share of always reported commodities is
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(13)  wα ≡ p0•q0 /[p0•q0 + u0•x0 + v0•y0];

and the base period expenditure share of commodities that are reported only in odd periods is

(14)  wβ ≡ u0•x0 /[p0•q0 + u0•x0 + v0•y0];

and the base period expenditure share of commodities that are reported only in even periods is

(15)  wγ ≡ v0•y0 /[p0•q0 + u0•x0 + v0•y0].

Given the above definitions, we can now frame our imputation problem as follows.  We want to
estimate the true long term Laspeyres index defined by (12) above, but we can only observe two
of the three components that make up this index in any given time period.  Our imputation
problem can be summarized by the following table:

Table 1: The Long Term True Laspeyres Index and its Observable Components

Period                      True index                                 Observable components

1 wα Pα(0,1) + wβ Pβ(0,1) + wγ Pγ(0,1) Pα(0,1) , Pβ(0,1) , __
2 wα Pα(0,2) + wβ Pβ(0,2) + wγ Pγ(0,2) Pα(0,2) ,  __ , Pγ(0,2)
3 wα Pα(0,3) + wβ Pβ(0,3) + wγ Pγ(0,3) Pα(0,3) , Pβ(0,3) , __
4 wα Pα(0,4) + wβ Pβ(0,4) + wγ Pγ(0,4) Pα(0,4) , __ , Pγ(0,4)
5 wα Pα(0,5) + wβ Pβ(0,5) + wγ Pγ(0,5) Pα(0,5) , Pβ(0,5) , __
…                                           …                                         …

In the above table, it is assumed that we know the base period expenditure shares, wα,  wβ and wγ

defined by (13) to (15) above.

We can first check the index methods mentioned in the introduction.  It is readily seen that the
Laspeyres-ratio defined by (3) above yields the following index, using our new notation:

(16) PR(t-1,t) = Pα(0,t)/ Pα(0,t-1),                                                         t = 1,2,…,T.

so that either the cumulated index or the modified Laspeyres are simply,

(17) PR(0,t) = PML(0,t) = Pα(0,t).                                                              t = 1,2,…,T.

In other words, the long term modified Laspeyres and the Laspeyres-ratio cumulated indexes are
equivalent in this model, and simply yield the price index constructed over the always available
commodities.  These indexes are fine provided that the movements of intermittently available
prices is the same as the movements in the always available prices.  Unfortunately, our IPP data
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will not support this assumption; i.e., intermittently available prices seem to have a slightly
different long term trend compared to always available prices.4

In the following three sections, we consider alternative imputation schemes to “fill in” some of
the missing prices.

3. A Long Term Cell Mean Method of Imputation

Our first method imputes the missing long term price relatives by taking the (base period
weighted) mean of the long term price relatives that are reported.  We call this the long term cell
mean method of imputation.

If t is odd, then the weighted mean of the long term price relatives that are available in period t
is:

(18) Pγ*(0,t) ≡ [wα Pα(0,t) + wβ Pβ(0,t)]/(wα + wβ) ,                   t = 1,3,5,….

Hence if t is odd, we estimate the imputed prices for the missing commodities as,

(19) vk
t* ≡ vk

0 Pγ*(0,t)                                                                 for k = 1,2,…,K

Since all these imputed prices are growing at the same rate, when they are aggregated using the
weights wk

0, we obtain the long term Laspeyres index defined by (18).  We therefore estimate the

long term Laspeyres index by the following index, which replaces the true Pγ(0,t) by Pγ*(0,t):

(20)    P*(0,t) ≡ wα Pα(0,t) + wβ Pβ(0,t) + wγ [Pγ*(0,t)]

               = wα Pα(0,t) + wβ Pβ(0,t) + wγ[wαPα(0,t) + wβPβ(0,t)]/ (wα+ wβ ),  using (18)

               = (wα  + wβ  + wγ){[wαPα(0,t) + wβ Pβ(0,t)]/ (wα + wβ )}

               = [wαPα(0,t) + wβ Pβ(0,t)]/ (wα + wβ ),  since (wα  + wβ  + wγ) =1,

   =  PL(0,t), from (1).

Thus, the long term Laspeyres index that uses the imputed price defined by (18)-(19) turns out to
equal the long term Laspeyres index defined in (1), that just uses all the available price quotes. In
other words, adding imputed prices based on their long term cell mean imputation is exactly the
same as not using imputed prices in the long term index.

On reflection, this result is not that surprising.  By not using any imputed prices in (1), the index
weights are simply apportioned over all the commodities whose prices are available.  Armknecht
and Maitland-Smith (1999, p. 6) refer to this as “implicit” imputation.  In contrast, “explicit”
imputation occurs when values for the missing prices are actually imputed, and explicitly used in
the index calculation.  As Armknecht and Maitland-Smith note, if the imputed values are set

                                                
4 Put another way, the index method defined by (17) makes no use of the intermittently available information, so it is
unlikely that this method is statistically efficient.
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equal to the price index for the group of goods in question (where initially this price index is
computed without any imputed values), then when we re-compute the price index taking into
account these imputed values, its value will not change at all.  In this sense, “implicit” is
equivalent to “explicit” imputation when the group price index is used to impute missing values,
and that is what we have confirmed.

Similarly, for even periods t, the imputed prices are:

(21) uj
t* ≡ uj

0 Pβ*(0,t)                                                                   for j = 1,2,…,J,

where,

(22) Pβ*(0,t) ≡ [wα Pα(0,t) + wγ Pγ(0,t)]/(wα + wγ) .                   t = 2,4,6,….

Again, we estimate the long term Laspeyres index by replacing the true Pβ(0,t) with its imputed

value Pβ*(0,t):

(23)    P*(0,t) ≡ wα Pα(0,t) + wβ [Pβ*(0,t)] + wγ Pγ(0,t)

               = wα Pα(0,t) + wβ [wαPα(0,t) + wγPγ(0,t)]/(wα+ wγ ) + wγ Pγ(0,t),  using (22)

               = (wα  + wβ  + wγ){[wαPα(0,t) + wγ Pγ(0,t)]/ (wα + wγ )}

               = [wαPα(0,t) + wγPγ(0,t)]/ (wα + wγ ),  since (wα  + wβ  + wγ) =1,

   =  PL(0,t), from (1).

This is the same result as in (20), that imputing prices based on their long term cell mean
imputation is exactly the same as not using imputed prices in the long term index.

The imputed indexes P*(0,t) can be compared to the true (but unobservable) sequence of
Laspeyres indexes )t,0(PL defined by (12) as follows:

Table 2: Long Term Cell Mean Imputed Laspeyres Indexes

Period             True index )t,0(PL                               Imputed Index P*(0,t)

1       wα Pα(0,1) + wβ Pβ(0,1) + wγ Pγ(0,1)    [wα Pα(0,1) + wβ Pβ(0,1)]/ (wα+ wβ)
2       wα Pα(0,2) + wβ Pβ(0,2) + wγ Pγ(0,2)    [wα Pα(0,2) + wγ Pγ(0,2)]/ (wα+ wγ)
3       wα Pα(0,3) + wβ Pβ(0,3) + wγ Pγ(0,3)    [wα Pα(0,3) + wβ Pβ(0,3)]/ (wα+ wβ)
4       wα Pα(0,4) + wβ Pβ(0,4) + wγ Pγ(0,4)    [wα Pα(0,4) + wγ Pγ(0,4)]/ (wα+ wγ)
5       wα Pα(0,5) + wβ Pβ(0,5) + wγ Pγ(0,5)    [wα Pα(0,5) + wβ Pβ(0,5)]/ (wα+ wβ)
…                                           …                                         …

It can be seen that the long term cell mean method of imputation does better than the methods
presented in the earlier section in the sense that it makes use of all of the available information.
However, if the even period and odd period price quotes have different trends in them, it can be
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seen that the imputed indexes will have a tendency to “bounce” from period to period.5

Moreover, even if the β  and γ trends are identical (but not equal to the α trend), then it can be
seen that the imputed index P*(0,t) gives too small a weight to the β  and γ trends.

To formalize the intuition that the imputed index will tend to “bounce”, let us define the period-
to-period change in the index P*(0,t), measured relative to the always available commodities
Pα(0,t), as:

(24) ∆*(t-1,t) ≡ [P*(0,t)/ Pα(0,t) - P*(0,t-1)/ Pα(0,t-1)] .

Then the following result is proved in the Appendix:

Proposition 1

Assume that wβ = wγ > 0.  If,

(25)  Pβ(0,t)  > Pα(0,t) > Pγ(0,t)  for all t=1,…,T,

or the reverse inequalities hold for all t, then:

(a) ∆*(t-1,t)∆*(t-2,t-1) < 0;

(b)    |∆*(t-2,t)| < max { |∆*(t-2,t-1)| , |∆*(t-1,t)| } .

To interpret these results, part (a) says that the index P*(0,t), measured relative to Pα(0,t), moves
in opposite directions between periods t-2 to t-1, and t-1 to t.  This is the “bouncing” phenomena
that we described above, and applies whenever (25) (or the reverse inequalities) hold.  We
interpret part (a) as saying there is negative autocorrelation in the index P*(0,t).  An implication
of this is that absolute value of the two period difference, as measured by |∆*(t-2,t)|, is less than
the highest of the absolute value of the one period changes, as stated in part (b).  Thus, the
bouncing behavior is “smoothed out” when we compare just even periods, or just odd periods.

We now turn to a second imputation method, to see if it can reduce some of the erratic
movement in the price index.

4. A Short Term Cell Mean Method of Imputation.

The method of imputation that we propose in the present section imputes the missing price
quotes for the current period using the movements in the short term price relatives for quotes
that are available for both the current period and the preceding period. We call this the short term
cell mean method of imputation, and it is similar to that actually used by the IPP.6

                                                
5 If the lack of reporting is due to seasonality, then it is quite likely that the even period prices have a different trend
than the odd period prices.
6  The IPP program imputes prices exactly as in (28) and (30) below, but Pα is the Laspeyres-ratio defined over the
intersection of price quotes available this period and price quotes or imputed prices available last period.  In
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For consecutive periods t-1 and t, the short term Laspeyres-ratio index that uses only information
on price quotes that are available in both periods is:

(26) Pα(t-1,t) ≡ [∑n=1
N wn

0 (pn
t/pn

0) ]/[ ∑n=1
N wn

0 (pn
t-1/pn

0)]          t = 2,3,4,…,T

  = Pα(0,t)/ Pα(0,t-1), using (6).

With the help of (26), we are now ready to impute prices for our missing long term price
relatives.

In period 1, the prices vk
1 are missing.  However, we have two sets of short term price relatives

that are observable in period 1, namely the price relatives pn
1/pn

0 that are in the Laspeyres index
Pα(0,1)  defined by (6) and the price relatives uj

1/uj
0 that are in the Laspeyres index Pβ(0,1)

defined by (8).  Thus in this case, our short run cell mean imputation for γ1 is

(27) vk
1**≡ vk

0 [wα Pα(0,1)  + wβ Pβ(0,1)]/ (wα + wβ)                         k=1,…,K.

Aggregating the imputed prices vk1** using the weights wk
0, we just obtain the index Pγ*(0,1)

defined in (18), and (19)-(20) follow much the same for period 1.

In period 2, the prices uj2 are missing.  We impute these by escalating their previous period

prices uj
1, using the index Pα(1,2).  Thus, for t even our estimator for the missing prices is:

(28) uj
t** ≡ uj

t-1 Pα(t-1,t);                                                               t = 2,4,6,….

Aggregating these using the weights wj
0, we obtain the imputed index,

(29) Pβ**(0,t) ≡ Pβ(0,t-1) Pα(t-1,t);                                               t = 2,4,6,….

In period 3, the prices vk3 are missing.  We impute these by escalating their previous period

prices vk
3, using the index Pα(2,3).  In general, for t odd our estimator for the missing prices is:

(30) vk
t** ≡ vk

t-1 Pα(t-1,t);                                                                  t = 3,5,7,….

Aggregating these using the weights wk
0, we obtain the imputed index,

(31) Pγ**(0,t) ≡ Pγ(0,t-1) Pα(t-1,t);                                                  t = 3,5,7,….

                                                                                                                                                            
contrast, we are defining Pα over just the price quotes available both periods.  Another difference between IPP
procedures and what we discuss in this section is that the IPP constructs the long term index using the cumulating
procedure like (3)-(4), whereas we construct it as in (32) and (33).
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Hence if  t is odd, we estimate the true long term Laspeyres index by the following index, which
replaces the true Pγ(0,t)  by Pγ**(0,t):

(32)    P**(0,t) ≡ wαPα(0,t) + wβ Pβ(0,t)  + wγ[Pγ**(0,t)] ,                   t = 1,3,5,…

  = [wα + wγ Pγ(0,t-1)/Pα(0,t-1)]Pα(0,t) + wβ Pβ(0,t),     using (26) and (31).

Similarly, if t is even, we estimate the true long term Laspeyres index by the following index,
which replaces the true Pβ(0,t)  by Pβ**(0,t):

(33)    P**(0,t) ≡ wαPα(0,t) + wβ [Pβ**(0,t)] + wγPγ(0,t) ,               t = 2,4,6,…

  = [wα + wβ  Pβ(0,t-1)/Pα(0,t-1)]Pα(0,t) + wγ Pγ(0,t),     using (26) and (29)

The imputed indexes P**(0,t)  can be compared to the true (but unobservable) sequence of
Laspeyres indexes )t,0(PL  defined by (12) as follows:

Table 3: Short Term Cell Mean Imputed Laspeyres Indexes

Period                True index )t,0(PL                     Imputed Index P**(0,t)

1     wαPα(0,1) + wβPβ(0,1) + wγPγ(0,1)       [wα Pα(0,1) + wβ Pβ(0,1)]/ (wα+ wβ)

2     wαPα(0,2) + wβPβ(0,2) + wγPγ(0,2)       [wα+ wβPβ(0,1)/Pα(0,1)]Pα(0,2) + wγPγ(0,2)

3     wαPα(0,3) + wβPβ(0,3) + wγPγ(0,3)       [wα + wγPγ(0,2)/Pα(0,2)]Pα(0,3) + wβPβ(0,3)

4     wαPα(0,4) + wβPβ(0,4) + wγPγ(0,4)       [wα + wβPβ(0,3)/Pα(0,3)]Pα(0,4) + wγPγ(0,4)

5     wαPα(0,5) + wβPβ(0,5) + wγPγ(0,5)       [wα + wγPγ(0,4)/Pα(0,4)]Pα(0,5) + wβPβ(0,5)
…                                           …                                         …

Suppose that there are different trends in the Pα, Pβ and Pγ indexes.  Then comparing Table 2
with Table 3, it appears that the short term cell mean method of imputation will generally lead to
more accurate estimates of the true Laspeyres indexes )t,0(PL  than the long term cell mean
method of imputation studied in the previous section.  It also appears that the short term cell

mean indexes will be less prone to the bouncing phenomenon.  However, if either of the Pβ or Pγ
price indexes have a trend that is divergent from the α trend, then it can be seen that the P**(0,t)
indexes defined by (32) and (33) will still have some unwanted fluctuations.  The reason is
simple: if the trends are different, then the short run trend in the prices that are always available
cannot capture the short run movement of the prices that are only intermittently available.
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To formalize this intuition that the index P**(0,t) is less prone to bouncing behavior, define the
period-to-period change in the index P**(0,t), measured relative to the always available
commodities Pα(0,t), as:

(34) ∆**(t-1,t) ≡ [P**(0,t)/ Pα(0,t) - P**(0,t-1)/ Pα(0,t-1)] .

Then the following result compares these differences from the short term imputation method
with the long term imputation method, as discussed in the previous section:

Proposition 2

Assume that wβ = wγ > 0.  Then, |∆**(t-1,t)| < |∆*(t-2,t)| .

Thus, under the simplifying assumption that wβ = wγ > 0, we see that absolute value of the one
period change |∆**(t-1,t)|, obtained with the short term imputation method, is strictly less than
the absolute value of the two period change |∆*(t-2,t)|, obtained using the long term imputation.
From Proposition 1, we know that the absolute value of the two period change is itself less than
the highest of the absolute one period changes, when condition (25) holds.  That is, the bouncing
behavior using our long term imputation method is smoothed out when we compare across two
periods, and we now see that using the short term imputation method the bouncing behavior is
reduced even further!

Up to now, we have not used future information on price movements to help predict movements
in current period prices.  In the following section, we relax this restriction and use information on
price quotes that are available in period t+1 to help us estimate the missing prices in period t.
Obviously, this change in the admissible information set means that final estimates of price
change for the current period cannot be made until the data from the following period has been
collected.  This limitation of the methods that will be proposed in the next section should be kept
in mind.

5. Interpolation Methods for Imputing Missing Prices

The methods of imputation that we propose in the present section estimate the missing price
quotes for the current period using the movements in the same prices between the previous
period and the succeeding period. Thus the methods that we discuss in this period are basically
based on interpolating the missing prices and so we term these methods interpolation methods
for imputing missing prices.

Our first interpolation method works as follows.  In period 1, we are missing the price
information that would enable us to construct the Laspeyres index Pγ(0,1) defined above by (10).
The simplest hypothesis that we could make about the missing period 1 prices vk

1 that are used to
construct the missing index is that these prices have been growing at a constant linear rate going
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from period 0 to period 2.  This simple hypothesis leads to the following imputed prices for the
missing vk

t for all odd periods t:7

(35)   vk
t*** ≡ [vk

t-1 + vk
t+1]/2 ;                                              k = 1,2,…,K ; t =1,3,….

Using these imputed prices, the missing fixed base Laspeyres index for period t is estimated by:

(36)    Pγ***(0,t) ≡ ∑k=1
K wk

0 [vk
t*** / vk

0]                                         t = 1,3,…
                          = ∑k=1

K wk
0 {[vk

t-1 + vk
t+1] / 2vk

0}                          using (37)

                          =  [Pγ(0,t-1) + Pγ(0,t+1)]/2                                     from (10).

where Pγ(0,0) ≡ 1.  Similarly, imputed prices for the missing even period prices are defined as:

(37)    uj
t*** ≡ [uj

t-1 + uj
t+1]/2 ;                                              j = 1,2,…,J, t=2,4,6,...

Using these imputed prices, the missing fixed base Laspeyres index for even periods is estimated
by:

(38)  Pβ***(0,t) ≡ ∑j=1
J wj

0 [uj
t*** / uj

0]
                            = ∑j=1

J wj
0 {[uj

t-1 + uj
t+1] / 2uj

0}                               using (38)

                           = [Pβ(0,t-1) + Pβ(0,t+1)]/2                                         from (8).

Collecting the above estimators for the missing indexes, we see that if  t is odd, we estimate the

true long term Laspeyres index by the following index, which replaces the true Pγ(0,t) by

Pγ***(0,t):

(39)    P***(0,t) ≡ wαPα(0,t)  + wβPβ(0,t)  + wγ[Pγ***(0,t) ]               t = 1,3,5,…

 = wαPα(0,t)  + wβPβ(0,t)  + wγ[Pγ(0,t-1) + Pγ(0,t+1)]/2

using (36) above.  If t is even, we estimate the true long term Laspeyres index by the following

index, which replaces the true Pβ(0,t) by Pβ***(0,t):

(40)    P***(0,t) ≡ wαPα(0,t)  + wβ  [Pβ***(0,t)]  + wγPγ(0,t)  ;              t = 2,4,6,…

= wαPα(0,t)  + wβ[Pβ(0,t-1) + Pβ(0,t+1)]/2 + wγPγ(0,t)   

using (38) above.

                                                
7 When t-1 equals 0, define vk

0 by 1 for each index k.
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The imputed indexes P***(0,t) can be compared to the true (but unobservable) sequence of
Laspeyres indexes )t,0(PL defined by (12) as follows:

Table 4: Linear Interpolated Laspeyres Indexes

Period             True index )t,0(PL                               Imputed Index P*(0,t)

1     wαPα(0,1) + wβPβ(0,1) + wγPγ(0,1)       wαPα(0,1) + wβPβ(0,1) + wγ[1+Pγ(0,2)]/2

2     wαPα(0,2) + wβPβ(0,2) + wγPγ(0,2)       wαPα(0,2) + wβ[Pβ(0,1) + Pβ(0,3)]/2 + wγPγ(0,2)

3     wαPα(0,3) + wβPβ(0,3) + wγPγ(0,3)       wαPα(0,3)  + wβPβ(0,3) + wγ[Pγ(0,2) + Pγ(0,4)]/2

4     wαPα(0,4) + wβPβ(0,4) + wγPγ(0,4)       wαPα(0,4)  + wβ[Pβ(0,3) + Pβ(0,5)]/2 + wγPγ(0,4)

5     wαPα(0,5) + wβPβ(0,5) + wγPγ(0,5)       wαPα(0,5)  +  wβPβ(0,5) + wγ[Pγ(0,4) + Pγ(0,4)]/2
…                                           …                                         …

If the true Pβ and Pγ indexes trend smoothly, it can be seen that the imputed indexes P***(0,t)
will track the true Laspeyres indexes very closely, and the bouncing phenomenon will be
eliminated entirely.  Thus of the four methods of imputation that we have considered thus far, the
present method based on simple linear interpolation seems best.

Obviously, there are additional variants of the methods we proposed in this section that could be
studied.  For example, instead of estimating the missing prices by taking arithmetic means of
neighboring prices as in (35) and (37), we could use geometric means.  In that case, the imputed
prices in (35) and (37) would necessarily be lower, and so would the imputed price indexes in
(39) and (40).  We have used the arithmetic means here because it accords nicely with the
Laspeyres formula for the long term indexes in (39) and (40):  using the arithmetic mean of the
individual prices for imputation is the same as using the arithmetic mean of the missing indexes.
If instead the geometric formula was used for the price index, then we would strongly
recommend using the geometric mean for the imputation of individual prices, as well.  In that
case, results analogous to (35)-(40) would hold, but with the prices replaced everywhere with the
logarithm of prices.8

There is one situation (at least) where the simple interpolation methods proposed in this section
will not give a satisfactory solution to the problem of missing price quotes.  This is a situation
where there is a great deal of variation in the general inflation rate going from period to period.
For example, if the general inflation rate is accelerating rapidly (as in a hyperinflation), then the
linear averaging that we have been advocating in this section will have the effect of artificially
raising the previous period’s overall index.  Under these circumstances, the method suggested in
                                                
8   Another possibility would be to use geometric averaging to define the imputed “micro” individual prices in (35)
and (37), even though the Laspeyres indexes are used.  We could contrast this with using geometric averaging to
define the “macro” indexes in Laspeyres indexes in (38) and (40).  Then it can be shown that using geometric
averaging for the “micro” prices, followed by the existing definition in the first line of (38) or (40), will result in a
lower overall index than instead using geometric averaging of the “macro” indexes in the second line of (38) or (40).
This result is available in an earlier draft of the theoretical portion of this paper, entitled “Imputation using the
Stochastic Approach to Index Numbers,” Erwin Diewert and Robert Feenstra, March 2000.
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the previous section may be more accurate.  However, it is possible to design somewhat more
complex interpolation schemes that will deal adequately with this situation of rapidly changing
general inflation rates and we will now present such a design.

We will suppose that the general rate of inflation is captured by the price index Pα(0,t)
constructed over the always available commodities.   Then in order to impute any missing prices,

we first divide the available prices in each period by Pα(0,t), so as to construct “real” prices.  We
then apply our methods in (35)-(40) above to these “real” prices.

Specially, this approach leads to the following imputed prices for the missing vk
t for all odd

periods t:9

(41)   vk
t****/ Pα(0,t) ≡ [vk

t-1/ Pα(0,t-1) + vk
t+1 / Pα(0,t+1)]/2 ;         k = 1,2,…,K ; t =1,3,….

Using these imputed prices, the missing fixed base Laspeyres index for period t is estimated by:

(42)    Pγ****(0,t) ≡ ∑k=1
K wk

0 [vk
t**** / vk

0]                                         t = 1,3,…

= ∑k=1
K wk

0 {[vk
t-1/Pα(0,t-1) + vk

t+1 /Pα(0,t+1)] / 2vk
0}Pα(0,t),  using (41)

            =  [Pγ(0,t-1) /Pα(0,t-1) + Pγ(0,t+1) /Pα(0,t+1)] Pα(0,t)/2  ,        from (10).

where Pγ(0,0) ≡ 1.  Similarly, imputed prices for the missing even period prices are defined as:

(43)   uj
t****/Pα(0,t) ≡ [uj

t-1/Pα(0,t-1) + uj
t+1/Pα(0,t+1)] /2 ;           j = 1,2,…,J, t=2,4,6,...

Using these imputed prices, the missing fixed base Laspeyres index for even periods is estimated
by:

(44)  Pβ****(0,t) ≡ ∑j=1
J wj

0 [uj
t**** / uj

0]

             = ∑j=1
J wj

0 {[uj
t-1/Pα(0,t-1) + uj

t+1 /Pα(0,t+1)] / 2uj
0}Pα(0,t) ,        using (43)

             = [Pβ(0,t-1) /Pα(0,t-1) + Pβ(0,t+1) /Pα(0,t+1)] Pα(0,t)/2 ,             from (8).

Thus, if  t is odd, we estimate the true long term Laspeyres index by the following index, which

replaces the true Pγ(0,t) by Pγ****(0,t):

(45)    P****(0,t) ≡ wαPα(0,t)  + wβPβ(0,t)  + wγ[Pγ****(0,t) ],               t = 1,3,5,…

                                                
9 When t-1 equals 0, define vk

0 by 1 for each index k.
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If t is even, we estimate the true long term Laspeyres index by the following index, which

replaces the true Pβ(0,t) by Pβ****(0,t):

(46)    P****(0,t) ≡ wαPα(0,t)  + wβ  [Pβ****(0,t)]  + wγPγ(0,t)  ,                t = 2,4,6,…

So far, these formulas are all similar to what was obtained with the simple linear interpolation,
except that all prices (or prices indexes) are first expressed in “real” terms by dividing by Pα(0,t).

To determine the properties of this more complex interpolation method, it is useful to express the

index (46) in first differences relative to the always available commodities Pα(0,t), as:

(47)  ∆****(t-1,t) ≡ [P****(0,t)/ Pα(0,t) - P****(0,t-1)/ Pα(0,t-1)] .

Then comparing this forward-looking imputation method with the short term cell mean method
denoted by ∆**(t-1,t)  defined in (34), we obtain:

Proposition 3

The linear interpolation of “real” prices results in an index that is a moving average of that
obtained from the short term cell mean approach:

     ∆****(t-1,t) = [∆**(t-1,t)  + ∆**(t,t+1)]/2 .

Thus, the linear interpolation of “real” prices results in an index that will smooth out fluctuations
obtained from the short term cell mean method. We already know that this latter method results
in an index that is less erratic than either the long term cell mean imputation or not imputing at
all, and now we see that using the linear interpolation of “real” prices will smooth the price index
even more.

6.  Dataset of International Prices

To investigate the various imputation techniques discussed above, we make use of a dataset from
the International Price program (IPP) of BLS, which consists of all price quotes received during
January 1997 to December 1999 at the most elementary “item” level.  Included in this dataset
was an indicator variable for whether each price quote is imputed or not.  In the following
sections, we will demonstrate the effects of alternative imputation procedures, including: simple
carry-forward of previous prices; linear interpolation of missing prices; the short term cell mean
approach, as currently done at IPP; and alternative cell mean approaches.10  The criterion used to
evaluate the imputation methods is to apply them to an artificial dataset in which some prices
                                                
10   We will no longer consider the long term cell mean approach, since it was shown in section 3
that it is equivalent to not imputing at all.  Thus, term “cell mean” will always refer to imputation
of the short term price movement using the previous month’s information, as in (28) and (30).
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have been imputed, but the actual prices for these observations are known.  Then the goal of the
various methods will be to minimize the difference between the actual and imputed prices.

In Table 5, we show the fraction of observations in the original dataset that are imputed.  There
are 893,935 monthly observations at the elementary “item” level, over the three years of data.
Of these, fully 34.4% are imputed, as shown in the first row.  This fraction is higher than the
non-response rate cited in the introduction, whereby 25.6% of the individual items tracked by
the IPP do not report a price in any given month (though of these, about 60% eventually supply a
price quote for that month or a later month).  The reason for this discrepancy is that when an new
item is added into the IPP survey (as occurs due to sample rotation or a genuinely new product),
it will take several months before a questionnaire is sent to a company for that product.  In the
meantime, the price for the item is imputed, but it would not be considered a “non-response” to
the questionnaire.  In the dataset, there are 24,089 instances of new items being added, or 2.7%
of the total number of observations.  If it takes about three months to send out a questionnaire for
a new product, then this would explain the difference between the imputation rate and the non-
response rate.

Moving up, the first level of aggregation used by the is the “company-classification group.”  A
“classification group” is similar to the Harmonized System, used to describe commodities in
international trade, and consists of over 10,000 individual merchandise items.  For some of these
(such as automobiles), the IPP keeps track of the prices of multiple items from each of multiple
companies.  Thus, the price at the “company-classification group” level (e.g. a Ford car) is itself
an Laspeyres index of the underlying item-level prices within this company (Ford) and
classification group (cars of a certain size).11

At the “company-classification group” level, which has roughly one-half as many price
observations.  At this level, there are still 32.5% of the observations that are comprised fully of
imputed item prices, as shown in the second row of Table 5.  Next, we can go to the
“classification group” level, which number 13,554 over both exports and imports.  Counting
these over the three years of data (which are not available for all classification groups), there are
147,082 observations in total.  Of these, 18.9% are fully comprised of imputed item prices.
Moving up from there, the next higher level of aggregation is the “lowest-level Enduse.”  The
Enduse categories are a 5-digit classification used for the construction of GNP accounts by the
Bureau of Economic Analysis.  To these five digits, the IPP adds an additional classification “J”
(judgmental) or “P” (probability).12 At the level, the fraction of fully imputed observations now
falls dramatically to 1.3%.  These amount to 141 observations at various dates.  Moving up to the
5-digit and 3-digit level (there is no separate 4-digit classification), the number of fully imputed
observations drops to 114 and 15, respectively, and then is zero at even higher levels.

                                                
11 The construction of the Laspeyres index at each level of aggregation is described fully in
Alterman, Diewert and Feenstra (1999, chapter 6).
12  The classification of “J” (judgmental) or “P” (probability) refers to how the sampling weights
are derived; these weights are in turn used in the construction of the Laspeyres indexes.
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Table 5:  Imputed Observations in Original Dataset

    N          Fraction   Number
   Imputed  Imputed

                                                       
Item level         893,935      0.344 307,151

Company-classif. group 407,613      0.325  132,405

Classification group   147,082      0.189  27,835

Lower Enduse level      9,884      0.014    141
(5-digit with J,P)

5-digit Enduse level    9,047      0.013    114

3-digit Enduse level    3,178      0.005   15

                                                       

Table 6:  Summary of Short-term Price Relatives, Original Dataset

     N          Mean        Std Dev       Minimum       Maximum      

Observation is not imputed, and lagged value is not imputed:

513,654      0.9995361     0.0488687     0.0011622     6.0085437

Observation is imputed:

283,062      0.9994038     0.0438278     0.2397446     4.3729739

Observation is not imputed, but the lagged value is imputed:

 73,130      1.0003046     0.0913728     0.0875208     4.3729739
                                                                                                                              

Note:  The observations above exclude those whose series is just beginning, in which case the
corresponding STR is zero.
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Of principle interest in the imputation is the behavior of the imputed prices, or what we define as
the short-term price relatives (STR):

(48) STRn
t  = pn

t/pn
t-1  , n=1,…,N.

Thus, the STR is simply the ratio of prices in two consecutive months.13  In Table 6, we report
the summary statistics for the short-term price relatives (STRs) at the elementary “item” level,
for three groups of observations: (i) observations that are not imputed, and where the lagged
value is also not imputed; (ii) observations that are imputed; (iii) observations that are not
imputed, but which have the lagged value imputed.  The third group is especially important,
since these are the STR that are computed by making use of the lagged, imputed values.  From
Table 6, we see that the standard deviation of the STR for the first two groups are quite close, at
0.049 and 0.044, respectively.  But the standard deviation for the third group is nearly twice as
large, at 0.091.  This strongly suggests that computing the STR by using a lagged, imputed value
introduces a significant amount of “noise” into the price movements.  Furthermore, notice that
the mean values of the third group differs from the first two groups differ by at least 0.0008,
which is 0.08% per month or 1% annually.  In the theory we found that having different mean
values for prices that imputed or not means that the imputation method may lead to erratic
results.

7.  Artificial Dataset

To investigate the effects of different imputation methods, an artificial dataset was created from
the original set in the following steps:

(a) The original dataset was sorted by classification code, company code, item and date.  Then
all imputed observations were deleted (along with some observations with missing STR),
which reduced the number of observations from 893,935 to 586,528;

(b) In this reduced set, successive observations were labeled “imputed” in the same order as in
the original (sorted) dataset.  For example, if the 10th-12th observations were imputed in the
original set, then the 10th-12th were so labeled in the reduced set, etc.;

(c) The calendar dates in the original and artificial dataset are the same, i.e. the observation
originally dated  January 1998 will still be so dated in the artificial dataset, though this
observation will be missing in the artificial set if it was imputed in the original.

To provide a simple example of an artificial dataset, suppose that there is just one item, available
for one year.  The data is sorted by months, and the original dataset contains imputed items in
March-April, and August-September, as shown in Table 7.

                                                
13   Actually, the item level prices pit are first divided by some base period price pn

0, obtaining a
long term relative LTRn

t = pn
t/pn

0, which is unit-free.  Then the short term relative is obtained as
STRn

t =LTRn
t/LTRn

t-1.
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Table 7:  Example of Original and Artificial Datasets

Date Original Imputed? Artificial Imputed?
                        Prices                                                  Prices                                      

January 101 101

February 103 103

March 102 Yes .

April 106 Yes .

May 105 105 Yes

June 106 106 Yes

July 108 108

August 110 Yes .

September 112 Yes .

October 115 115

November 111 111

December 109 109 Yes

                                                                                                                                    

Note:
The artificial dataset is created by omitting those observation that were imputed in the original
dataset, and then labeling the remaining observation as “imputed” in the same order that these
appeared in the original dataset.
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To construct the artificial dataset, the first step is to delete the imputed observations for these
fours months, as are shown in Table 7 with a period.  Second, we label some observations as
imputed.   Since the 3rd-4th months, and 8th-9th months were imputed originally, we use this same
ordering in the artificial dataset (while ignoring the deleted observations).  This means that May-
June are labeled as imputed, since these are the 3rd and 4th (non-missing) months, as well as
December, which is the 8th (non-missing) month.  If there was another item available,  then the
fact that September was imputed originally would mean that January, the first observation for the
next item, would also be labeled as imputed.

The purpose of creating this artificial dataset will be to temporarily omit the price data for the
observations that are labeled as “imputed,” and then experiment with different procedures for
imputing these values.  In that way, the imputed values can be compared with the actual price
values for these observations, to determine the accuracy of the imputation methods.

Before experimenting with any imputation procedures, we summarize properties of the artificial
dataset in Tables 8 and 9, which are computed in the same manner as Tables 5 and 6.  From
Table 8, the number of imputed observations at the elementary “item” level is 34.5% in the
artificial dataset, which is nearly identical to that in the original dataset.  This is to be expected
from the construction of the artificial dataset.  At higher levels of aggregation, the fraction of
imputed observations are also similar between Tables 5 and 8, except for some difference as the
“company-classification group” level.

In Table 9, we report the summary statistics for the short-term price relatives (STR) of the
artificial dataset at the elementary “item” level, again for three groups of observations: (i)
observations that are not labeled as imputed, and where the lagged value is also not imputed; (ii)
observations that are labeled as  imputed; (iii) observations that are not imputed, but which have
the lagged value labeled as imputed.  The third group will have their item-level STR recomputed
when we experiment with various imputation techniques.  Before these calculations are done,
however, it is of interest to see how the true STR in this third group compare with the first two
groups.  From Table 9, we see that the standard deviation of the STR in all three groups are quite
similar, ranging between 0.047 and 0.51, and that the mean values are also very close. This
contrasts sharply with Table 6, where the variance of the third group (with lagged imputed
values) was nearly twice as large as the rest of the sample.  Thus, in the artificial dataset, the true
STR for observations that are label “imputed” are representative of the entire dataset, as we
would expect by construction.

At the same time, there are some differences between the original and artificial datasets that we
should highlight.  Because the artificial set omits all the imputed observations and also labels
other observations as “imputed”, it will tend to have more months between non-missing, non-
imputed observations than the original dataset.  This can be seen from the example shown in
Table 7, where the original dataset has imputed prices in March-April, and August-September.
Then the artificial dataset has missing prices for March and April, and the prices in May and
June are labeled as imputed, so there are five months from the prices in February to those in July,
whereas in the original dataset there are just three months from prices in February those in May.
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Table 8:  Imputed Observations in Artificial Dataset

    N          Fraction   Number
   Imputed   Imputed

                                                       

Item level         586,528        0.345 202,622

Company-classif. group 275,208        0.233  64,216

Classification group   119,247    0.169 20,127

Lower Enduse level      9,743         0.017  162
(5-digit with J,P)

5-digit Enduse level    8,933         0.014  128

3-digit Enduse level    3,163         0.008  26

                                                       

Table 9:  Summary of True Short-term Price Relatives, Artificial Dataset

     N          Mean        Std Dev       Minimum       Maximum      

Observation is not imputed, and lagged value is not imputed:

292,236      0.9995505     0.0498350     0.0094737     5.8791209

Observation is labeled imputed:

177,781      0.9994585     0.0466720     0.0011622     3.7586207

Observation is not imputed, but the lagged value is labeled imputed:

 43,637      0.9997559     0.0510347     0.2290744     6.0085437
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This aspect of the original and artificial datasets is described in Table 10, where we show the
frequency distribution of the number of months T between non-missing, non-imputed
observations (ignoring cases where T=1, meaning that there are no imputed observations
between two successive months).  The average value of T is 3.25 for the original dataset, and
4.21 for the artificial dataset.  More generally, the values of the cumulative frequency
distribution for T in the original dataset is everywhere above that for the artificial dataset, i.e. for
each value of T, there are more observations in the original set have that many months or fewer
lying between non-imputed observations.

 Aside from this feature, there may well be other  differences between the two datasets that we
are not able to measure.  Suppose, for instance, that the imputed observations in the original
dataset occur for some economic reasons, e.g. prices have not changed, so the companies do not
send in the reporting forms.  Then the true (but unobserved) behavior of these prices would be
quite different from those in the artificial dataset that we have labeled as “imputed.”  We have no
way to assess or control for these differences between the datasets, and this can be viewed as a
limitation of our analysis.14

We now investigate whether imputation methods applied to the artificial dataset lead to “nosier”
STR in this third group of observations, where the lagged values are imputed.

8. Carry-forward and Linear Interpolation  of Price Observations

The first, and simplest, imputation method is to carry forward the previous values of the price
until a new value is collected.  Suppose that this new value is available in month t, and that the
previous value was available in month t-T, with T > 2.  Using this method, we can construct two
different measures of the accuracy of this “carry forward” technique:

(49) STRCARRYn
t = pn

t / pn
t-T

(50)  DIFCARRYn
t = | pn

t-1 – pn
t-T|/ pn

t-1, T > 2.

The first of these measures, STRCARRY, gives the short term relative that would result by
carrying forward the value pn

t-T  to period t-1, and then comparing this price to pn
t.  This short

term relative can be compared to those reported in Table 6 when the observation is not imputed,
but the lagged value is labeled “imputed”.  Specifically, we found in Table 6 that the STR when
the lagged values where imputed were twice as variable as the STR in the rest of the dataset.  We
will be interested in seeing whether this is also true for STRCARRY.

                                                
14   We are indebted to Katharine Abraham for pointing out this limitation.
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Table 10:  Time between Non-imputed Observations,
Original and Artificial Datasets

               Original Data           Artificial Data            

                        Cumulative               Cumulative
   Months   Frequency     Percent    Frequency     Percent  

       2       19587       42.33       11105        29.68
       3       16806       78.66       11414        60.19
       4        3593       86.42        4387        71.91
       5        1538       89.75        2702        79.13
       6        1915       93.89        2509        85.84
       7         803       95.62        1325        89.38
       8         471       96.64         866        91.69
       9         540       97.81         812        93.86
      10         252       98.35         470        95.12
      11         170       98.72         365        96.10
      12         249       99.26         363        97.07
      13          89       99.45         211        97.63
      14          60       99.58         163        98.06
      15          49       99.68         172        98.52
      16          30       99.75         121        98.85
      17          20       99.79          84        99.07
      18          42       99.88          89        99.31
      19          22       99.93          61        99.47
      20           9       99.95          43        99.59
      21           3       99.96          45        99.71
      22           3       99.96          22        99.77
      23           6       99.98          22        99.83
      24           0       99.98          17        99.87
      25           1       99.98           9        99.90
      26           1       99.98          15        99.94
      27           8      100.00           8        99.96
      28           0      100.00           8        99.98
      29           0      100.00           4        99.99
      31           1      100.00           2        99.99
      32                                   1       100.00
      33                                   1       100.00
                                                            

Mean: Original data = 3.25 months, Artificial data = 4.21 months
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The other measure, DIFCARRY, takes the absolute value of the difference between the actual
and imputed price in the last month of the imputation, expressed relative to the actual price.
Like STRCARRY, we construct this criterion in months when the observation is not imputed,
but the lagged value is labeled “imputed”.  In addition, we shall consider the values of
DIFCARRY for up to three months before the last non-imputed price, as follows:

(51) DIF2CARRYn
t = | pn

t-2  – pn
t-T|/ p n

t-2, T > 3,

(52) DIF3CARRYn
t = | pn

t-3  – pn
t-T|/ p n

t-3, T > 4.

The second imputation method is to linearly interpolate the item-level prices between the
previous value of the price, and the new value that is collected.  Suppose that the last available
data was T > 2 months ago.  Then the prices are linearly interpolated according to the formula:

(53) LINEARn
t-i

  = pn
t-T + (T-i)(pn

t – pn
t-T)/T,    i=1,2,…,T.

where: LINEARn
t-i

 = the interpolated price for the ith month before the current month; pn
t-T  = the

price for the last month (t-T) with price data that is not labeled “imputed”; pn
t = the current price.

Again, we can construct two different measures of the accuracy of the interpolation technique:

(54) STRLINn
t = pn

t / LINEARn
t-1

(55)  DIFLINn
t = | pn

t-1 – LINEARn
t-1| /pn

t-1, T > 2.

The interpretations of these two criterion for linear interpolation is similar to their interpretation
for the carry-forward technique.  STRLIN in (54) gives the short-term relative computed
between the last month of linear interpolation, and the next month of actual price data.  We are
interested in seeing whether the standard deviation of this criterion is exceptionally large.
DIFLIN in (55) gives the absolute value of the difference between the actual and imputed price
in the last month of the imputation, expressed relative to the actual price.  Like STRLIN, we
construct this criterion in months when the observation is not imputed, but the lagged value is
labeled “imputed”.  In addition, we shall consider the values of DIFLIN for up to three months
before the last non-imputed price, as follows:

(56) DIF2LINn
t = | pn

t-2 – LINEARn
t-2| /pn

t-2, T > 3,

(57) DIF3LINn
t = | pn

t-3 – LINEARn
t-3| /pn

t-3, T > 4.

The results of the first two imputation techniques, computed over all observations in the artificial
dataset, are reported in Table 11.
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Table 11:  Summary of Carry-forward and Linear Interpolation

 Variable       N          Mean       Std Dev       Minimum       Maximum

(A)  Exports

Short-term relative between imputed and non-imputed price:

 STRTRUE     21864     0.9996778     0.0440504     0.3272171     3.0000000
 STRCARRY    18878     0.9983707     0.0959513     0.2280000     6.0000000
 STRLIN      18878     0.9982478     0.0243143     0.5034965     1.4835681

Differences between actual and imputed prices (in percent):

 DIFCARRY    17636     0.0232519     0.0844687             0     3.2967914
 DIFLIN      17636     0.0103225     0.0363065             0     0.9861111
 DIF2CARRY   11104     0.0219724     0.0808387             0     3.2967914
 DIF2LIN     11104     0.0133111     0.0419300             0     1.0989305
 DIF3CARRY    5523     0.0282794     0.0985733             0     3.2967914
 DIF3LIN      5523     0.0190500     0.0618059             0     1.6483957

(B)  Imports

Short-term relative between imputed and non-imputed price:

 STRTRUE     21709     0.9997205     0.0558301     0.2290744     6.0085437
 STRCARRY    18428     0.9964100     0.0927185     0.2219646     4.1176484
 STRLIN      18428     0.9980984     0.0244097     0.5094340     1.5384615

Differences between actual and imputed prices (in percent):

 DIFCARRY    17190     0.0255967     0.0919111             0     5.0085687
 DIFLIN      17190     0.0117618     0.0541308             0     5.0085499
 DIF2CARRY   11245     0.0236498     0.0839319             0     3.5052224
 DIF2LIN     11245     0.0152113     0.0483392             0     2.0000001
 DIF3CARRY    5307     0.0272394     0.0901576             0     3.5052224
 DIF3LIN      5307     0.0185398     0.0455863             0     0.7908163

                                                                                                                                                            

Note:  These calculations are done over observations in the artificial dataset that are not imputed,
but have their lagged value imputed.
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Part (A) of Table 11 deals with exports, and part (B) deals with imports.  We report first the
mean values of the STR, computed for those observations that are not imputed, but whose lagged
value is labeled as “imputed”.  The true value of the STR, indicated by STRTRUE, has a
standard deviation of 0.044 for exports and 0.056 for imports.  In contrast, the STR using the
carry-forward technique, indicated by STRCARRY, has a standard deviation which is nearly
twice as large, at 0.096 for exports and 0.093 for imports.  Recall that when considering the
observations in the original dataset that are not imputed, but have their lagged value imputed, we
also obtained an STR with standard deviation that was twice as large as the rest of the sample
(see the last row of Table 6).  The original dataset used a short term cell mean method of
imputation, so in this respect the carry-forward technique performs quite similarly.  In contrast,
the linear interpolation results in a standard deviation for the STR, indicated by STRLIN, that is
about one-half of its true value, for either exports or imports.  In this sense, the linear
interpolation leads to even less month-to-month volatility in prices than the true data.

The remaining rows of Table 11, parts (A) and (B), report the absolute value of the percentage
difference between the imputed and actual prices, during the last three months of imputation.  In
the first month before the non-imputed price, the carry-forward technique has a value of
DIFCARRY=0.023 or 2.3% for exports, while for the linear interpolation we obtain
DIFLIN=0.010 or 1.0%.  Similar magnitudes are obtained for imports, where the carry-forward
technique differs from the true prices by more than twice as much as with linear interpolation.
However, as we work backwards in the months, the relative difference between these two
imputation techniques is reduced.  In the second and third lagged month of imputation, for either
exports or imports, the carry-forward technique differs from the true prices by about 50% more
than the linear interpolation.

In a separate Appendix, we report the results from these two techniques, summarizing the means
and standard deviations at the one-digit Enduse level.  The results are similar to what we have
found for total exports and imports.

One problem with the linear interpolation technique is that it would be difficult to implement in
practice when T > 3, that is, when there is more than three months between actual price
observations.  The reason for this is that the IPP keeps price data up and running for only the
current and three lagged months, so that computing (57) when T > 3 would not be feasible.  A
solution to this problem is to use the carry-forward technique initially, but then revert to the
linear interpolation with (at most) a three month lag when an actual price quote is obtained for
any item.  That is, we define a hybrid measure of the imputed price as:

     =  LINEARn
t-i  if  i < T < 3,

(58)   LINCARRYn
t-i    =  pn

t-T if  3 < i < T,

     =  pn
t-T + (3-i)(pn

t – pn
t-3)/3,  if  i < 3 < T.
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Operationally, this would mean that the IPP staff carries forward the last value of a price until a
new quote is collected.  If there is three or less months between quotes, then the linear
interpolation technique is used to “fill in” the missing prices – as in the first line of (58).  If there
is more than three months between quotes, then the previous value of the price is used for all
months before the (current and) last three – as in the second line of (58).  For the last three
months, the IPP staff revise the published indexes by interpolating this item in a linear fashion
between its lagged value pn

t-T and its current value pn
t – as expressed in the last line of (58).

Thus, only the indexes published during the past quarter would be subject to revision.  Given
this third technique, we assess it validity in the same way as the other two methods:

(59)  STRLINCt = pn
t / LINCARRYn

t-1 ,

(60)   DLINCARn
t-1 =  | pn

t-1 – LINCARRYn
t-1|/ pn

t-1, T > 2,

(61) D2LINCARn
t-1 =  | pn

t-2 – LINCARRYn
t-2|/ pn

t-2, T > 3,

(62) D3LINCARn
t-1 =  | pn

t-3 – LINCARRYn
t-3|/ pn

t-3, T > 4.

In Table 12, we report the absolute value of the percentage difference between the imputed and
actual prices, for the hybrid technique and the previous linear interpolation technique. Again,
part (A) deals with exports and part (B) deals with imports.  In the first month before the non-
imputed price, the linear interpolation gives DIFLIN=0.010 or 1.0% for exports, while for the
hybrid technique we obtain a value of DLINCAR=0.012 or 1.2%.  Similar values are obtained
for imports.  Thus, the linear interpolation results in imputed prices that are slightly closer to
their true values, but not by much as compared to the hybrid technique. As we work backwards
in the months, the difference between these two imputation methods increases somewhat.  In the
second lagged month before each non-imputed price, the linear interpolation gives
DIF2LIN=0.013 or 1.3%, while the hybrid technique gives D2LINCAR=0.017 or 1.7%.  In the
third lagged month before each non-imputed price, we obtain DIF3LIN=0.019 or 1.9% from the
linear interpolation, while for the hybrid technique we have D3LINCAR=0.028 or 2.8%, with
similar values for imports.  In this third lagged month, the hybrid technique is identical to carry-
forward, and its deviation from the true prices is about 50% greater than that obtained with the
linear interpolation.

In the Appendix, we report the results at the one-digit Enduse level, which generally show the
same pattern as in Table 12.  That is, the hybrid technique results in differences from the true
prices that somewhat exceed that obtained from the linear interpolation, but the difference
between these two imputation methods is not that great in the first lagged month.  By the third
lagged month, the hybrid technique is identical to carry-forward, and its deviation from the true
prices is about 50% to 100% greater than that obtained with the linear interpolation.
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Table 12:  Summary of Hybrid Technique and Linear Interpolation

 Variable       N          Mean       Std Dev       Minimum       Maximum

(A)  Exports

Short-term relative between imputed and non-imputed price:

 STRTRUE    21864     0.9996778     0.0440504     0.3272171     3.0000000
 STRLIN     18878     0.9982478     0.0243143     0.5034965     1.4835681
 STRLINCAR  18878     0.9975962     0.0322332     0.4697802     1.4835681

Differences between actual and imputed prices (in percent):

 DIFLIN     17636     0.0103225     0.0363065             0     0.9861111
 DLINCAR    17636     0.0120494     0.0393572             0     1.0989305
 DIF2LIN    11104     0.0133111     0.0419300             0     1.0989305
 D2LINCAR   11104     0.0173358     0.0564909             0     2.1978610
 DIF3LIN     5523     0.0190500     0.0618059             0     1.6483957
 D3LINCAR    5523     0.0282794     0.0985733             0     3.2967914

(B)  Imports

Short-term relative between imputed and non-imputed price:

 STRTRUE    21709     0.9997205     0.0558301     0.2290744     6.0085437
 STRLIN     18428     0.9980984     0.0244097     0.5094340     1.5384615
 STRLINCAR  18428     0.9970780     0.0318351     0.4611679     1.5384615

Differences between actual and imputed prices (in percent):

 DIFLIN     17190     0.0117618     0.0541308             0     5.0085499
 DLINCAR    17190     0.0134164     0.0555605             0     5.0085520
 DIF2LIN    11245     0.0152113     0.0483392             0     2.0000001
 D2LINCAR   11245     0.0189168     0.0593021             0     2.3368150
 DIF3LIN     5307     0.0185398     0.0455863             0     0.7908163
 D3LINCAR    5307     0.0272394     0.0901576             0     3.5052224
                                                                                                                                                            

Note:  These calculations are done over observations in the artificial dataset that are not imputed,
but have their lagged value imputed.
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 9. Short Term Cell Mean Imputation

The next method is to imputed values using the short term cell mean approach, as described in
section 4, much as is currently done by the IPP.15  In this technique, the Laspeyres-ratio index is
computed from the artificial dataset, without using any of the price data labeled as “imputed,” at
each of following levels of aggregation: (i) company-classification group; (ii) classification
group; (iii) 5-digit Enduse (including J and P); (iv) 5-digit Enduse classification; (v) 3-digit
Enduse classification; (vi) 2-digit Enduse classification.

Using these results, whenever a short-term relative (STR) is either labeled as imputed in the
artificial dataset, or is missing, then it is replaced by the Laspeyres-ratio index computed at the
lowest possible level of aggregation.  For example, if the STR for some item is labeled as
imputed, then we first check whether the same company-classification group has a Laspeyres-
ratio computed.  This Laspeyres-ratio will be available if the same company and classification
group has some price data that is not labeled as imputed in the same month, and the preceding
month.  If so, then that STR is replaced with the Laspeyres-ratio.  If not, then we check whether
the same classification group has a Laspeyres-ratio computed; if so, then that STR is replaced
with the Laspeyres-ratio. If not, then we check whether the same 5-digit Enduse group has a
Laspeyres-ratio computed; if so, then that STR is replaced with the Laspeyres-ratio.  This
procedure continues until we have worked up to the 2-digit Enduse level, at which time all
observations labeled as imputed, or missing, will be “filled in” by the cell-mean method.

Following this, the price for the observations labeled as imputed is re-computed as:

(63)   PCELLn
t = pn

t-1 * STRn
t,  if observation t-1 is not imputed;

(64) PCELLn
t = PCELLn

t-1 * STRn
t,    if observation t-1 and t are both imputed

That is, we re-compute the prices by cumulating the imputed STR, in the same manner as is
currently performed within the IPP.    The accuracy of this “cell mean” technique can be assessed
using similar statistics to what we have already considered:

(65) STRCELLn
t = pn

t / PCELLn
t-1

(66) DIFCELLn
t =  | pn

t-1 – PCELLn
t-1|/ pn

t-1, T > 2,

(67) DIF2CELLn
t =  | pn

t-2 – PCELLn
t-2|/ pn

t-2, T > 3,

(68) DIF3CELLn
t =  | pn

t-3 – PCELLn
t-3|/ pn

t-3, T > 4.

                                                
15   In note 6 we described several differences between the short term cell mean approach of
section 4, and actual IPP procedures.  The short term cell mean approach that we empirically
implement in this section is identical to IPP procedures, so it differs in those respects from the
theoretical description of section 4.
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The results are shown in Table 13.  The first measure reported, STRCELL, gives the short-term
relative that would result by using the cell-mean technique.  This criterion can be compared to
those reported in Table 6 when the observation is not imputed, but the lagged value is labeled
“imputed”.  Specifically, we found in Table 6 that the STR when the lagged values where
imputed were twice as variable as the STR in the rest of the dataset.  In Table 13, looking at
exports in part (A), we find that the standard deviation of STRCELL=0.094 is more than twice
the standard deviation of STRTRUE=0.044, which is the STR using actual prices. For imports in
part (B), the standard deviation of STRCELL=0.086 is slightly less than twice the standard
deviation using actual prices, STRTRUE=0.056.  Thus, applying the cell-mean method to the
artificial dataset results in short-term relatives that are “too noisy,” when measured in the first
month that a price not labeled as imputed becomes available.

Next, we can compare the difference between actual and imputed prices using the cell-mean and
hybrid imputation techniques. DIFCELL=0.023 and DLINCAR=0.012 give these differences in
the first lag before each non-imputed price, for exports, and we see that the cell-mean method
gives an average difference which is about twice as high as for the hybrid technique. The same
holds for imports.  In the second lag, DIF2CELL is still slightly higher than D2LINCAR, but by
the third lag this difference between the two techniques has reversed, for either exports or
imports.  In other words, the cell-mean is slightly closer to actual prices than is the hybrid
technique in the third lag (the hybrid technique is equivalent to carry-forward in the third lag),
but the cell-mean does worse than the hybrid technique in the second and first lags.  In summary,
the cell mean technique, as currently used by the IPP and other programs at BLS, dominates the
hybrid technique only slightly in the third lag.

In the Appendix we report the results at the one-digit Enduse level, which generally show the
same pattern as in Table 13.  That is, the cell-mean technique results in differences from the true
prices that somewhat exceed that obtained from the hybrid interpolation in the first and second
lag, but the difference between these two imputation methods is small (and in either direction) in
the third lag.

10. Combining the Cell Mean and Linear Interpolation

In section 5, we suggested combining the cell mean and linear interpolations, whereby the “real”
prices were interpolated.  This would recommended during periods of rapidly changing, or
highly erratic, prices.  There is another more practical reason to combine these techniques.  As
we have already noted, the IPP program keeps data for only 3 months, so that doing a linear
interpolation between the current and last price quote might not be feasible.  One solution to this
problem was the hybrid technique discussed in section 8, whereby the prices are simply carried
forward, and then a linear interpolation over three months (or less) is performed when a new
quote is available.  An alternative hybrid technique would be to impute the prices using the short
term cell mean method, and then apply a linear interpolation over three months (or less) when a
new quote is available.  These two hybrid techniques differ only in terms of the method to
impute the prices before the linear interpolation is applied, and they are referred to as LINCAR
for the first hybrid, combining the carry-forward with linear interpolation, and LINCELL for the
second hybrid, combining the cell-mean with linear interpolation.  Both these methods are
practical alternatives to the imputation currently done by IPP.
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Table 13: Summary of Cell Mean and Hybrid Imputations

 Variable       N          Mean       Std Dev       Minimum       Maximum

(A)  Exports

Short-term relative between imputed and non-imputed price:

 STRTRUE    21864     0.9996778     0.0440504     0.3272171     3.0000000
 STRCELL    17057     1.0013562     0.0936856     0.2926829     6.8796068
 STRLINCAR  18878     0.9975962     0.0322332     0.4697802     1.4835681

Differences between actual and imputed prices (in percent):

 DIFCELL    17057     0.0228482     0.0785664             0     2.4166667
 DLINCAR    17636     0.0120494     0.0393572             0     1.0989305
 DIF2CELL   10664     0.0202748     0.0701460             0     2.4166667
 D2LINCAR   11104     0.0173358     0.0564909             0     2.1978610
 DIF3CELL    5297     0.0254721     0.0829550             0     2.4166667
 D3LINCAR    5523     0.0282794     0.0985733             0     3.2967914

(B)  Imports

Short-term relative between imputed and non-imputed price:

 STRTRUE    21709     0.9997205     0.0558301     0.2290744     6.0085437
 STRCELL    16597     1.0022704     0.0857781     0.2302684     3.1609195
 STRLINCAR  18428     0.9970780     0.0318351     0.4611679     1.5384615

Differences between actual and imputed prices (in percent):

 DIFCELL    16597     0.0254358     0.0769573             0     2.9319156
 DLINCAR    17190     0.0134164     0.0555605             0     5.0085520
 DIF2CELL   10785     0.0233514     0.0771853             0     2.9319156
 D2LINCAR   11245     0.0189168     0.0593021             0     2.3368150
 DIF3CELL    5082     0.0270413     0.0810556             0     2.9319156
 D3LINCAR    5307     0.0272394     0.0901576             0     3.5052224
                                                                                                                                                            

Note:  These calculations are done over observations in the artificial dataset that are not imputed,
but have their lagged value imputed.
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We have applied both hybrid techniques, with results shown in Table 14.  Comparing the STR of
the two hybrid techniques, or the differences with actual prices in the first, second or third lag,
the two techniques give remarkably similar results!  In the first lag, for example, we obtain
DLINCELL = 0.0110 and DLINCAR = 0.0109 for exports, and DLINCELL = 0.0124 and
DLINCAR = 0.0122 for exports.  The differences with actual prices continue to be very similar
across the two techniques in the second and third lags.16 Thus, if linear interpolation is going to
be performed over a three-month window, then it goes not make much difference whether the
prices before this time simply have their former values carried forward, or are imputed using the
cell mean technique.  Either of these hybrid techniques are preferable to using carry-forward or
cell-mean without any linear interpolation.  These conclusion also holds at the one-digit Enduse
level, as reported in the Appendix, where the difference between the two hybrid techniques is
small and of either sign.

11. Using Country of Origin/Destination

A final method we will investigate is to impute the missing prices using data from the same
country of origin or destination, and within the closest  product group.  This approach might be
most relevant for imports, where commodities from the same country of origin are faced with
identical exchange rate movement, but we also apply the technique to U.S. exports,
distinguishing their country of destination.  Under this approach, the Laspeyres-ratio index is
computed from the artificial dataset at each of following levels of aggregation: (i) same country
of origin/destination and same classification group; (ii) same country of origin/ destination and
same 5-digit Enduse (including J and P); (iii) same country of origin/destination and same 5-digit
Enduse classification; (iv) same country of origin/destination and same 3-digit Enduse
classification; (v) same country of origin/destination and same 2-digit Enduse classification; (vi)
same country of origin/destination and same 1-digit Enduse classification.  Whenever a price is
missing, it is imputed using the calculated index at the lowest level of aggregation on this tree.

With this difference in the imputation method, all our other calculations are much the same as
what we performed above.  Thus, Table 15 compares the hybrid calculation – linear interpolation
over three months with initial carry-forward – with the cell mean using the same country of
origin or destination.  These results can be contrasted with Table 13, where we showed the
hybrid calculation and the cell mean imputation computed over the nearest product group (but
not using country of origin or destination).  By construction, the hybrid calculations in the two
tables give identical results, while it is the cell-mean imputations that differ in principle.  But
surprisingly, the results for the cell-mean imputations of Table 13 and 15 are nearly the same!
Noting that the number of observations used to compute the various statistics differ slightly (due
to complexities of the calculations), there is hardly any observable difference between using
country of origin/destination in imputing prices, and not using this information.  Perhaps
differences between these techniques would show up at a disaggregate level, but such differences
are not pronounced enough to show up for total exports and imports.

                                                
16   It should be noted that the number of observations in the dataset when the two hybrid
methods are combined is slightly less than in previous tables, so the values change slightly.
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Table 14: Summary of Two Hybrid Techniques

 Variable       N          Mean       Std Dev       Minimum       Maximum

(A)  Exports

Short-term relative between imputed and non-imputed price:

STRTRUE       21791     0.9997182     0.0440231     0.3272171     3.0000000
STRLINCELL    16046     0.9983748     0.0288780     0.5034965     1.4835681
STRLINCAR     16046     0.9981244     0.0293817     0.5034965     1.4835681

Differences between actual and imputed prices (in percent):

DLINCELL      16046     0.0110036     0.0364708             0     0.9861111
DLINCAR       16046     0.0109011     0.0361675             0     0.9861111
D2LINCELL     10225     0.0155947     0.0499423             0     1.6111111
D2LINCAR      10225     0.0152773     0.0485795             0     1.2474527
D3LINCELL      5034     0.0251831     0.0842361             0     2.4166667
D3LINCAR       5034     0.0248022     0.0827719             0     1.6097272

(B)  Imports

Short-term relative between imputed and non-imputed price:

STRTRUE       21624     0.9997204     0.0559372     0.2290744     6.0085437
STRLINCELL    15637     0.9983146     0.0289353     0.4729803     1.5384615
STRLINCAR     15637     0.9976540     0.0291785     0.4611679     1.5384615

Differences between actual and imputed prices (in percent):

DLINCELL      15637     0.0123671     0.0363499             0     1.1564735
DLINCAR       15637     0.0121537     0.0371566             0     1.1684075
D2LINCELL     10410     0.0178335     0.0542632             0     1.9546104
D2LINCAR      10410     0.0171933     0.0557163             0     2.3368150
D3LINCELL      4871     0.0262851     0.0806930             0     2.9319156
D3LINCAR       4871     0.0244013     0.0857199             0     3.5052224
                                                                                                                                                            

Note:  These calculations are done over observations in the artificial dataset that are not imputed,
but have their lagged value imputed.
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Table 15: Summary of Cell Mean and Hybrid Imputations
-- Using Country of Origin/Destination

 Variable       N          Mean       Std Dev       Minimum       Maximum

(A)  Exports

Short-term relative between imputed and non-imputed price:

 STRTRUE    21864     0.9996778     0.0440504     0.3272171     3.0000000
 STRCELL    15746     1.0011048     0.0892516     0.2926829     6.8796068
 STRLINCAR  18878     0.9975962     0.0322332     0.4697802     1.4835681

Differences between actual and imputed prices (in percent):

 DIFCELL    15746     0.0239274     0.0738378             0     2.4166667
 DLINCAR    17636     0.0120494     0.0393572             0     1.0989305
 DIF2CELL   10037     0.0218265     0.0656893             0     1.6529557
 D2LINCAR   11104     0.0173358     0.0564909             0     2.1978610
 DIF3CELL    4939     0.0272895     0.0756754             0     1.3578140
 D3LINCAR    5523     0.0282794     0.0985733             0     3.2967914

(B)  Imports

Short-term relative between imputed and non-imputed price:

 STRTRUE    21707     0.9997204     0.0558327     0.2290744     6.0085437
 STRCELL    15416     1.0015277     0.0814531     0.2328672     3.8014859
 STRLINCAR  18428     0.9970780     0.0318351     0.4611679     1.5384615

Differences between actual and imputed prices (in percent):

 DIFCELL    15416     0.0252304     0.0769434             0     2.9847505
 DLINCAR    17190     0.0134164     0.0555605             0     5.0085520
 DIF2CELL   10267     0.0235915     0.0773548             0     2.9928985
 D2LINCAR   11245     0.0189168     0.0593021             0     2.3368150
 DIF3CELL    4793     0.0274864     0.0802594             0     2.9997446
 D3LINCAR    5307     0.0272394     0.0901576             0     3.5052224
                                                                                                                                                            

Note:  These calculations are done over observations in the artificial dataset that are not imputed,
but have their lagged value imputed.
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In Table 16 we also report the results from comparing the two hybrid techniques: linear
interpolation of three months with cell-mean before this,  and linear interpolation of three months
with initial carry-forward.  These results can be contrasted with Table 14, where the cell-mean
did not use any information on country of origin or destination.  Expect for some differences in
the number of observations in Table 14, the results for linear interpolation with initial carry-
forward are identical across Tables 13 – 16, by construction.   But in addition, the results for the
linear interpolation with initial cell-mean are nearly identical in Tables 14 and 16.  In other
words, we again find that using the information on country of origin or destination has hardly
any impact on our results, at least not at the level of total exports and imports.

In the Appendix we report the results at the one-digit Enduse level, which generally show the
same pattern as in Table 13 – 16.  That is, the cell-mean technique gives results that are quite
similar whether the country of origin/destination is used, or not.  In one case (Enduse Q3), using
the country of destination for the cell-mean resulted in an imputation that was noticeably further
away from the true prices, and in no case did the use of this information appear to significantly
improve the imputation.

12. Conclusions

The issue of imputing prices used to construct official price indexes has been largely ignored in
the literature, and together with Armknecht and Maitland-Smith (1999), this paper begins to fill
that gap.  Our theoretical exploration has led us through four imputation techniques:  the long
term cell mean method (which turned out to be equivalent to not imputing); the short term cell
mean method (currently used by the IPP and other programs at BLS); linear interpolation; and
linear interpolation using “real” prices (i.e. deflated by the cell mean of other available prices).
In a somewhat different order, we have empirically examined five techniques: simple carry-
forward of prices; linear interpolation; a hybrid technique that combines these two; short term
cell mean imputation; and a hybrid technique that combines cell mean with linear interpolation.
From the theory and empirical results, our conclusions can be summarized as follows:

1) Some imputation is better than no imputation:
Without imputation, the price index is likely to be “noisy” due to changing commodity sets in
each period, or will exclude a great deal of information if the set of commodities is restricted
to be the same over time.  Both of these alternatives is undesirable, making some form of
imputation essential for statistical agencies.

2) The short term cell mean introduces some “noise” into the price index:
While the short term cell mean method, as is currently practiced, is better than no imputation,
there are strong theoretical reasons to expect this method to result in undue fluctuation in the
price index.  This was strongly confirmed in the empirical work, where the short term
relative computed over observations that were not imputed, but had their lagged value
imputed, was nearly twice as variable as the rest of the sample.
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Table 16: Summary of Two Hybrid Techniques
-- Using Country of Origin/Destination

 Variable       N          Mean       Std Dev       Minimum       Maximum

(A)  Exports

Short-term relative between imputed and non-imputed price:

STRTRUE       21864     0.9996778     0.0440504     0.3272171     3.0000000
STRLINCELL    16290     0.9983876     0.0287553     0.5034965     1.4835681
STRLINCAR     18878     0.9975962     0.0322332     0.4697802     1.4835681

Differences between actual and imputed prices (in percent):

DLINCELL      16123     0.0112153     0.0356245             0     0.9861111
DLINCAR       17636     0.0120494     0.0393572             0     1.0989305
D2LINCELL     10134     0.0160790     0.0465267             0     1.1087869
D2LINCAR      11104     0.0173358     0.0564909             0     2.1978610
D3LINCELL      4939     0.0272895     0.0756754             0     1.3578140
D3LINCAR       5523     0.0282794     0.0985733             0     3.2967914

(B)  Imports

Short-term relative between imputed and non-imputed price:

STRTRUE       21707     0.9997204     0.0558327     0.2290744     6.0085437
STRLINCELL    15872     0.9982729     0.0290135     0.4766223     1.5384615
STRLINCAR     18428     0.9970780     0.0318351     0.4611679     1.5384615

Differences between actual and imputed prices (in percent):

DLINCELL      15722     0.0125360     0.0365089             0     1.1431293
DLINCAR       17190     0.0134164     0.0555605             0     5.0085520
D2LINCELL     10332     0.0180936     0.0539739             0     1.9998297
D2LINCAR      11245     0.0189168     0.0593021             0     2.3368150
D3LINCELL      4793     0.0274864     0.0802594             0     2.9997446
D3LINCAR       5307     0.0272394     0.0901576             0     3.5052224
                                                                                                                                                            

Note:  These calculations are done over observations in the artificial dataset that are not imputed,
but have their lagged value imputed.
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3) Linear interpolation results in less fluctuation of prices than the true series:
In both the theory and empirical results, linear interpolation results in much smoother series.
Indeed, the month-to-month fluctuation of these prices is even less than the true prices.  This
technique requires, however, than past information be stored until a new price quote is
available, and then that the official price index be revised.  If there is a limit on how many
months of past information is stored, then hybrid techniques should be considered.

4) Combining either carry-forward or cell-mean with linear interpolation gives similar results:
Two hybrid techniques were considered, the first of which carried forward the prices, and the
second of which used short term cell mean imputation, until the linear interpolation could
begin.  In both cases, linear interpolation was done over the previous three months (or less).
The two hybrid techniques gave remarkably similar results.

5) Computing cell-means for the same country of origin/destination and nearest product group
gives nearly identical results to just using the nearest product group:
Rather than just using Enduse categories for the cell mean imputation, we have examined
whether import prices should also be imputed using price data from the same countries of
origin, and export prices from the same country of destination.   We expect that having the
same exchange rate changes would lead to more consistent movements in prices than just
being in the same Enduse category.  However, in practice we find that this extra information
does not improve the accuracy of the imputation method, at least not at the aggregate level of
total exports or imports.
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Appendix

Proof of Proposition 1:

From (20) and (23) with wβ= wγ , we readily obtain,

(A1)    ∆*(t-1,t) ≡ [P*(0,t)/ Pα(0,t) - P*(0,t-1)/ Pα(0,t-1)]

               = wβ [Pβ(0,t)/Pα(0,t) - Pγ(0,t-1)/Pα(0,t-1)]/ (wα + wβ ), for t odd

   = wβ [Pγ(0,t)/Pα(0,t) - Pβ(0,t-1)/Pα(0,t-1)]/ (wα + wβ ), for t even.

Condition (25) ensures that Pβ(0,t)/Pα(0,t) > 1 > Pγ(0,t-1)/Pα(0,t-1), for all t.  Then we see from
(A1) that ∆*(t-1,t) > 0 for t odd, and ∆*(t-1,t) < 0 for t even, so that part (a) follows directly.

Summing (A1) over two periods, we obtain ,

(A2)    ∆*(t-2,t) = ∆*(t-2,t-1) + ∆*(t-1,t)

= wβ [Pβ(0,t)/Pα(0,t) - Pβ(0,t-2)/Pα(0,t-2)]/ (wα + wβ ),   for t odd

= wβ [Pγ(0,t)/Pα(0,t) - Pγ(0,t-2)/Pα(0,t-2)]/ (wα + wβ ),   for t even.

From the alternating sign pattern of ∆*(t-1,t), it follows that,

(A3)    ∆*(t-2,t) = ∆*(t-2,t-1) + ∆*(t-1,t)

   =  |∆*(t-2,t-1)| - |∆*(t-1,t)|,  if t is even,

   = -|∆*(t-2,t-1)| + |∆*(t-1,t)|,  if t is odd.

Therefore, regardless of the sign of ∆*(t-2,t), we have,

(A4)    |∆*(t-2,t)| < max { |∆*(t-2,t-1)| , |∆*(t-1,t)| }

which is part (b).

Proof of Proposition 2:

Choosing t as even, rewrite (32) for t-1 as,

(A5) P**(0,t-1)/Pα(0,t-1) - wγ Pγ(0,t-2)/Pα(0,t-2) = [wα + wβ Pβ(0,t-1)/Pα(0,t-1)]
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Substituting (A4) into (33), we obtain,

(A6) P**(0,t)  = [P**(0,t-1)/Pα(0,t-1) - wγ Pγ(0,t-2)/Pα(0,t-2)]Pα(0,t) + wγPγ(0,t).

We therefore have,

(A7) ∆**(t-1,t) ≡ [P**(0,t)/Pα(0,t) - P**(0,t-1)/Pα(0,t-1)]

    = wγ[Pγ(0,t)/Pα(0,t) - Pγ(0,t-2)/Pα(0,t-2)],    from (A6)

     =  ∆*(t-2,t) (wα + wβ ),  from (A2) with wγ = wβ.

Our assumption that wγ = wβ  > 0 ensures that (wα + wβ ) < 1, so taking the absolute value of (A7)
we obtain Proposition 2.  A similar proof applies for t odd, in which case the change in the index
relative to the always available commodities becomes,

(A8) ∆**(t-1,t) ≡ [P**(0,t)/Pα(0,t) - P**(0,t-1)/Pα(0,t-1)]

         = wβ[Pβ(0,t)/Pα(0,t) - Pβ(0,t-2)/Pα(0,t-2)] .

Proof of Proposition 3:

For t odd, we can compute from (42) to (46) that,

(A9) ∆****(t-1,t) ≡ [P****(0,t)/ Pα(0,t) - P****(0,t-1)/ Pα(0,t-1)] .

= wβ[Pβ(0,t)/Pα(0,t) - Pβ(0,t-2)/ Pα(0,t-2)]/2

+ wγ[Pγ(0,t+1)/Pα(0,t+1) - Pγ(0,t-1)/ Pα(0,t-1)]/2 .

It follows directly from (A7)-(A8) that,

(A10) ∆****(t-1,t) = [∆**(t-1,t) + ∆**(t,t+1)]/2.


